
Abstract

A Dual-System Approach to Realistic Evaluation

of Large-Scale Networked Systems

Richard Allan Alimi

2010

Many useful techniques and infrastructures have been developed to test the correct-

ness and performance of computer systems before deployment. However, they are

limited when applied to the large-scale networked systems that are prevalent today,

from Internet routing to peer-to-peer (P2P) video delivery. First, testing infras-

tructures are typically smaller in size and scale than the production infrastructure,

limiting the scale of possible test scenarios. Second, keeping the testing infrastruc-

tures and their configurations synchronized with the production infrastructures is

difficult or impossible. Finally, capturing and integrating production workloads into

the testing infrastructures can be challenging.

To address these shortcomings, we have developed novel techniques to conduct

correctness and performance evaluations on production infrastructures for large, net-

worked systems. We show how incorporation of domain-specific knowledge of a

system being tested can provide an efficient testing infrastructure that is scalable,

accurate, and easily integrates production workloads. Our techniques also avoid

disruption to users of the production system.

In particular, we first present a general formulation of a dual system running

both the production and the tested systems concurrently. We then present Shad-

owNet, a realization of the dual-system concept at the link layer and network layer.

ShadowNet can be used by network providers (e.g., ISPs) to evaluate the correct-

ness and performance of network configurations before deployment. We also present

PEAC, a realization of the dual-system concept at the application layer, to introduce

additional capabilities. In particular, using P2P live streaming as an example, we

show how the tested system can be used to handle the production system’s workload

while avoiding disruption to users. PEAC introduces a scalable and distributed con-

trol technique that allows a developer to construct test scenarios with a large number

of nodes.

2

A Dual-System Approach to Realistic

Evaluation of Large-Scale Networked

Systems

A Dissertation
Presented to the Faculty of the Graduate School

of
Yale University

in Candidacy for the Degree of
Doctor of Philosophy

by
Richard Allan Alimi

Dissertation Director: Yang Richard Yang

December 2010

Copyright c© 2011 by Richard Allan Alimi

All rights reserved.

ii

Contents

1 Introduction 1

1.1 Need for Real Evaluations . 2

1.2 Summary of Contributions . 4

1.3 Roadmap . 5

2 Related Work 6

2.1 Modeling and Simulation . 6

2.2 Logging/Replay Systems . 9

2.3 Lab and Staging Infrastructures . 10

2.3.1 Summary . 12

3 Dual-System Architecture 13

3.1 DS-Enabled Instance . 14

3.1.1 Merged State . 15

3.1.2 Resource Scheduler . 15

3.2 System Boundary, Tasks, and Outputs 16

3.3 Dual-System Management . 17

3.4 Discussion . 17

4 ShadowNet: Dual System for Network Configuration 19

iii

4.1 Background and Motivation . 19

4.1.1 Complexity of Network Configuration 20

4.1.2 State of the Art . 21

4.1.3 ShadowNet Overview . 22

4.2 Motivating Usage Scenarios . 24

4.3 System Overview . 26

4.3.1 Forwarding Engine . 27

4.3.2 Run-time Shadow Management 30

4.3.3 Configuration Management Layer 30

4.4 Runtime FIB Analysis . 31

4.4.1 Objectives and Overview . 31

4.4.2 Representative IP Addresses 32

4.4.3 Computing Reachability and Loops 33

4.5 Performance Testing with Packet Cancellation 36

4.5.1 Overview . 37

4.5.2 Shadow Data Packet Cancellation 38

4.5.3 Shadow Control Packet Forwarding 40

4.5.4 Overhead and Perturbation Analysis 41

4.6 Configuration Commitment . 42

4.6.1 Overview . 42

4.6.2 Protocol Operation . 43

4.6.3 Error Handling and Rollback 45

4.7 Implementation . 47

4.7.1 Objectives . 48

4.7.2 Supporting Shadow Configurations 48

4.8 Evaluations . 52

iv

4.8.1 Methodology . 53

4.8.2 Overhead . 54

4.8.3 Usage of Shadow Configurations 58

4.9 Summary and Future Directions . 64

5 PEAC: Dual System for Internet Live Streaming 65

5.1 Background and Motivation . 65

5.1.1 Complexity of P2P Live Streaming 65

5.1.2 State of the Art . 66

5.1.3 PEAC Overview . 67

5.2 Motivating Use Cases . 70

5.3 Overview . 71

5.3.1 Setting and Scope . 71

5.3.2 Experiment Workflow . 71

5.3.3 Components . 73

5.3.4 Experiment Definition and Control 73

5.3.5 Resource/Task Scheduler . 75

5.4 Distributed Scenario Control . 78

5.4.1 Controlled Arrivals and Departures 79

5.4.2 Triggering Conditions . 83

5.4.3 Handling Uncontrolled Early Departures 84

5.4.4 Extensions . 86

5.5 Adaptive Task Reassignment . 86

5.5.1 Overview of Adaptive Allocation 87

5.5.2 Player Buffer Window as a Control API 90

5.5.3 Data Flow Constraint . 93

v

5.5.4 Rescue Subsystem Window Adjustment 94

5.5.5 Load on Rescue Subsystem . 94

5.5.6 Accuracy . 95

5.6 Compositional Runtime . 95

5.6.1 Overview . 95

5.6.2 Modularity and Composibility 96

5.6.3 Coexistence of Dual Systems 98

5.7 Evaluations . 99

5.7.1 Methodology . 99

5.7.2 Software Framework . 100

5.7.3 Distributed Scenario Control 101

5.7.4 Adaptive Task Reassignment 106

5.8 Discussions and Future Directions . 107

5.8.1 Discussion . 108

5.8.2 Future Directions . 108

6 Conclusions and Future Directions 110

vi

List of Figures

3.1 Components of the Dual-System Architecture. 14

3.2 Resource Sharing oblivious to internal semantics. 18

4.1 System architecture for network management with shadow configura-

tions. 27

4.2 Network with an srnet being used to install a new router to support

new services. The new router has its real configuration disabled during

installation. 28

4.3 Algorithm for computing representative addresses given {fibsi}. . . . 34

4.4 Algorithm for checking FIB consistency for rep addr A. 34

4.5 Subroutine for constructing forwarding graph for destination address a. 35

4.6 Packet cancellation and scheduling. 38

4.7 Shadow packet header combined with a real packet for transmission

on a single link. 39

4.8 Scenario showing how a transient state can cause temporary conges-

tion. White routers have not yet swapped; black routers have swapped. 45

4.9 Implementation of router supporting shadow configurations: Shaded

parts are new or modified. 49

4.10 System CPU utilization for varying traffic rates (300-byte packets). . 54

4.11 System CPU utilization for FIB updates (100 Mbps, 300-byte packets). 55

vii

4.12 FIB storage overhead for topology changes in shadow configuration

(US-ISP). 55

4.13 RTT between peers at New York and Seattle during commitment and

rollback. 59

4.14 RTT between peers at New York and Seattle during OSPF link weight

change. 60

4.15 Delay variation for real transit traffic (Seattle→Chicago). 61

4.16 RTT in real configuration (Salt Lake City→Atlanta). 62

4.17 Loss rate for streams (Salt Lake City server). 62

4.18 Stream throughput (Houston→Chicago). 62

4.19 Delay variation CDF (illustrative topology). 63

5.1 PEAC experiment scenario timeline. 72

5.2 PEAC system architecture. 74

5.3 Algorithm incorporating centralized control for each peer i to choose

arrival time ae,i. 80

5.4 Algorithm with decentralized control for each peer i to choose arrival

time ae,i. 81

5.5 Overview of Adaptive Task Reassignment; (a) Experimental subsys-

tem running alone; (b) Adaptive Task Reassignment mode. 91

5.6 Adding an admission control component. 97

5.7 Opportunities to trigger 70,000-client 1-hour experiment in SH Sports

channel. 101

5.8 Opportunities to trigger 20,000-client 4-hour experiment in HN Satel-

lite channel. 102

5.9 Distributed Scenario Control requires little additional traffic. 103

viii

5.10 Distributed Scenario Control generates accurate arrival behaviors. . . 104

5.11 Total peers and experimental peers in channel used to evaluate peer

dynamics. 105

5.12 Peer substitution delay with peer dynamics. 106

ix

List of Tables

4.1 Network configurations used. 53

4.2 FIB storage overhead (Abilene). 57

4.3 New service testing experiment setup. 61

5.1 Adaptive Task Reassignment can achieve experiment accuracy. 107

5.2 Adaptive Task Reassignment can protect user experience. 107

x

Acknowledgements

First of all, thank you to my advisor, Richard Yang. His guidance and insight

have been crucial towards my growth both inside and outside of research. I have

especially appreciated the freedom he has given to explore and manage my own

research interests. Within his group, I have been fortunate to explore multiple fields

from wireless networking to P2P to network management, thanks to Richard’s broad

knowledge and seemingly-endless thirst to explore and understand. Through many

intense discussions, he has pushed me to find the core of a problem, clearly articulate

it, and present a solution. Richard has also been a wonderful mentor outside of

research. In particular, he urged and supported involvement in professional activities,

which have been instrumental in my personal growth.

I also thank my committee members, Mike Fischer, Sanjai Narain, and Avi Sil-

berschatz, for insightful discussions on the work presented in this dissertation. This

dissertation has also greatly benefited from insights and and tireless work of Chen

Tian, Ye Wang, and David Zhang (from PPLive). Many others deserve special thanks

for helpful discussions and feedback: Lorenzo Alvisi, Jim Aspnes, Matthew Caesar,

Yuan Dong, Bryan Ford, Charles Kalmanek, Karthik Lakshminarayanan, Li Erran

Li, Jennifer Rexford, Ehab Al-Shaer, Zhong Shao, Hao Wang, Xiaowei Yang, and

Xuan Zhang.

Beyond those mentioned above, I have also been fortunate to work with many

xi

wonderful collaborators, especially Lili Qiu, Ramachandran Ramjee, Dawei Shen,

Jingpu Shi, Yanjun Sun, Harish Viswanathan, and Yin Zhang. Each one has brought

forth unique knowledge and insights, and I have learned much from each of them.

There have been numerous exciting events during my time at Yale. Most no-

table was the intense excitement leading up to the P4P July 2008 field amongst

the research group at Yale, Hao Wang, Ye Wang, Richard Yang, as well as Haiyong

Xie and Arvind Krishnamurthy, the team at Pando including Laird Popkin, James

Royalty, and Ramit Hora, and the team at Comcast including Chris Griffiths, Jason

Livingood, Rich Woundy, and other members of the P4P Working Group including

Marty Lafferty, Doug Pasko, and others. Beyond having the privilege to be part of

an amazing team, I learned much from them about network operations and real P2P

system deployments. I have also been fortunate to be able to continue many of these

collaborations and friendships to the current day.

During my time at Yale I have both enjoyed the friendship of and benefited from

discussions with members and visitors of the Yale LANS research group: Lijiang

Chen, Hongqiang Liu, ZhiHui Lu, Chen Tian, Haiyong Xie, Hao Wang, Ye Wang,

and Xuan Zhang. There have been many interesting projects and I look forward to

keeping in touch. I am also thankful for friendships I have developed with others

in the department, in particular Fitz Nowlan, Lev Reyzin, and Nikhil Srivastava,

Xueyuan Su, and Andi Voellmy.

And last but certainly not least, thank you to my wife Jen Yamtich who has

been by my side since the beginning graduate school, and to my parents, Paul and

Maryann Alimi, who have provided constant love and support.

Richard Alimi

New Haven, CT, USA

September 2010

xii

Chapter 1

Introduction

Large-scale, networked systems are crucial components in today’s Internet. They

support many necessary features from the basic functionality provided by computer

networks to the applications run on top of these networks. However, to support

increasing demand and diverse requirements, these systems have become increasingly

complex. For example, they typically involve multiple interacting components, are

designed to scale horizontally to many users, implement complex features, and handle

failures on a regular basis. Each of these requirements may also interact in complex

ways.

As a result of the increased complexity, many networked systems have become

difficult to understand, contain bugs, or operate in sub-optimal states. Changes that

attempt to fix bugs or improve performance may end up introducing new bugs or

perform worse than before the change was made. For example, user forums for P2P

applications such as PPLive (e.g., [76]), BitTorrent (e.g., [11]), and Skype (e.g., [82])

show that updates may introduce additional bugs or reduce performance. Changes

to networking infrastructure cause either reduced performance for end-users or even

a failure for network traffic to reach its intended destination [52].

1

1.1 Need for Real Evaluations

To better understand networked systems and evaluate changes or alternative designs,

it is necessary to have a platform for performing evaluations. Multiple techniques for

testing networked systems have been proposed. Modeling and simulation approaches

are useful for exploring impacts of certain designs or changes and gathering under-

standing of relationships between key properties in a system. Logging and replay

frameworks are useful for debugging already-observed issues since they enable a de-

veloper to inspect the internal state and execution of a complex system. Lab testing

and staging infrastructures are also frequently used to execute a system and observe

behavior in an environment similar to the production environment.

Though existing techniques are useful, they are not sufficient for realistically

evaluating correctness and performance of networked systems at a large scale. These

existing techniques suffer from a single, basic problem: they do not have the capa-

bility to test how previously-unknown, but crucial, behaviors would affect a system

if it were fully deployed. In particular, abstract models used by simulation and mod-

eling approaches do not capture the full complexity of many networked systems and

the environments in which they run. Logging and replay frameworks are limited to

detecting bugs that have already been observed and are not suitable for testing alter-

native scenarios or system behaviors. Finally, though lab and staging infrastructures

may be able to run a networked system in various testing scenarios, they typically

do not scale to the size and full complexity of the production environment. Further-

more, if the test infrastructure interfaces with real users, there is little protection

against disruption if the test system does not perform well.

After considering the limitations of existing approaches, we observe that a scal-

able and realistic environment in which to test a networked system is the production

2

environment itself. Testing within the production environment has the unique ad-

vantage of including realistic behaviors both of users and the environment in which

the system will be running. However, there are challenges that must be addressed.

First, users should be protected from the effects of unsuccessful tests. Second, test

results should be accurate; they should be indicative of the behavior that would be

observed if running alone on the production infrastructure. Third, the production

infrastructure may have limited resources; these resources should be used efficiently.

To address these challenges, we introduce the Dual-System Architecture which

can be used for testing networked systems in realistic environments with real users.

With this architecture, the system is subjected to the full environment in which it

will be running by reusing the production infrastructure. Designers, developers, and

operators of large-scale networked systems can evaluate and improve performance

and detect bugs in a realistic environment. By integrating testing and evaluation

as a basic capability into a production system and taking advantage of domain-

specific knowledge and novel algorithms, the Dual-System Architecture can obtain

accurate evaluation results, protect users, and make efficient use of the production

infrastructure’s resources.

After illustrating the general Dual-System Architecture, we instantiate it in two

diverse contexts. First, we present ShadowNet, a dual system for network configu-

rations, that provides fundamental improvements to testing and deploying configu-

ration changes to network infrastructure. Second, we present PEAC, a dual system

for P2P live streaming applications, which extends the Dual-System Architecture to

incorporate applications running on end-user machines.

Dual systems are a fundamental improvement to the state of art for testing large-

scale networked systems. With both ShadowNet and PEAC, we illustrate both the

diverse applicability and benefits to major systems in today’s Internet.

3

1.2 Summary of Contributions

This dissertation introduces a novel architecture for testing real-world networked

systems. We show that substantial benefits and capabilities are enabled by using the

deployed infrastructure for both the production system and the system being tested.

Empowered by the Dual-System Architecture, we develop new techniques for

testing real-world networked systems. We show that application of domain-specific

knowledge enables both efficient use of the underlying infrastructure and testing

accuracy, thus creating a realistic environment for large-scale testing.

Beyond presenting the general Dual-System Architecture and instantiations in

two diverse settings, we make the following specific contributions in the context of

ShadowNet:

• We introduce packet cancellation, a novel technique for testing performance

impacts of configuration changes in a network infrastructure without affecting

end-users whose traffic is being through the same infrastructure.

• We present algorithms for reachability analysis, illustrating how dual systems

can integrate with existing modeling and invariant checking by using data

captured from the live system.

• We develop transactional capabilities for network configuration management by

introducing a commitment protocol that shields end-users from the convergence

effects typically observed with changes to network configurations.

In the context of PEAC, we make the following additional contributions:

• We introduce the concept of allowing the system being tested to handle the

production system’s workload while avoiding disruptions to end-users.

4

• We develop a distributed test control mechanism that enables construction of

test scenarios with a large number of distributed nodes (e.g., clients watching

a live streaming channel).

1.3 Roadmap

The dissertation is organized as follows. In Chapter 2, we present related work on

testing in networked systems and illustrate their limitations. Chapter 3 introduces

the overall architecture and design space for dual systems. Chapter 4 presents an

instantiation of the dual-system architecture for network configurations. Chapter 5

then presents an extension to applications using P2P live streaming as an example.

We discuss future directions and conclude in Chapter 6.

5

Chapter 2

Related Work

There are many existing techniques for testing networked systems, each providing

unique capabilities and benefits. In this chapter, we survey existing techniques and

discuss their limitations. It is important to note that dual systems are not meant to

replace existing testing techniques, but rather to supplement them.

There is a large body of work on testing methodologies used in standard software

engineering, from technologies (e.g., unit testing) to organization structures (e.g.,

separation of test engineers from software engineers). We focus on techniques for

testing networked systems.

This chapter provides an overview of existing techniques for testing networked

systems. We discuss both their advantages to illustrate where they may be comple-

mentary to dual systems, but also point out the limitations that dual systems can

address.

2.1 Modeling and Simulation

Theoretical modeling and simulation techniques are characterized by capturing key

properties of the full-scale system and creating an analytical model or an imple-

6

mentation focusing on key functionality. This has been a useful approach in many

settings.

First, there are many generic simulation toolkits that have been developed and ex-

tended (e.g., [71,80]). These toolkits implement common functionality (e.g., network

topologies and protocols) that approximates real-world settings. They frequently also

provide interfaces to easily control and modify test scenarios. Using these toolkits, it

is possible to develop a simulated version of a system and easily change parameters

such as network topology, tests with machine failures, etc.

Other toolkits have been developed that enable simulation for particular types

of networked systems. For example, GNS3 [37] enables one to deploy network con-

figuration changes on an emulated topology. There exist toolkits for other types of

networked applications as well (e.g., [13, 60] for P2P streaming systems).

Theoretical modeling and analysis has also been widely applied in many net-

worked systems. Due to the complexity of many networked systems, it is challenging

to develop a tractable model for the complete system. Thus, many models are de-

veloped for specific parts of a system. For example, models have been developed for

network reachability (e.g., [98]), security (e.g., [43]), interdomain routing (e.g., [26]),

and content distribution in an application-layer overlay (e.g., [12, 63, 74, 102, 104]).

Even more comprehensive models have also been developed to capture interactions

between different components both within the network infrastructure (e.g., [28, 69])

and between network infrastructure and applications (e.g., [8]).

Benefits: By focusing only on key functionalities of a system, modeling and simu-

lation have two primary benefits. First, since only key characteristics are captured, it

can take less time to identify the impacts of certain changes. Making a change to the

full-scale system typically entails details such as designing test cases, regression tests,

7

and handling error conditions. In addition, for networked systems in particular, it is

typically faster to design, execute and analyze different test scenarios (e.g., network

conditions, failure scenarios, etc) since the physical infrastructure is not used.

Second, modeling and simulation can be helpful to understand relationships be-

tween system components and parameters. This can be enormously helpful to under-

stand properties of particular system states without needing to execute them. For

example, for network configuration managment, it has been noted that the configu-

ration analysis tool NetDB provides AT&T significant cost savings [86].

Limitations: While modeling and simulation have their benefits, they also have

important limitations. First, it can be difficult to determine exactly which key prop-

erties will affect the behavior of a complete system. The behavior of a networked

system may not only depend on its own behavior, but also on the behavior of external

systems that it uses (e.g., DNS, BGP). Furthermore, even if certain key properties

are determined to be important, one may be forced to make simplifying assumptions

to keep the model tractable or simply because it is not known how to model certain

behaviors. For example, measurements studies (e.g., [24, 92]) have shown that the

behavior of certain networks can be very different than previously assumed. As a re-

sult, a model or simulation may miss possibly-unknown interactions with properties

that are not modeled or not modeled accurately [92].

Beyond choosing which properties to model, it can also be difficult or impossible

to keep a simulation or model in sync with a deployed system. As a networked system

evolves, a simulation or model must be kept in sync in order to produce meaningful

results. For example, if a new version of Cisco IOS introduces a new feature or

behavior (e.g., [18]), the new feature must also be implemented in the corresponding

simulator.

8

2.2 Logging/Replay Systems

Another useful technique for testing networked systems is logging and replay. Logging

and replay consists of capturing data, typically an execution trace, from a running

system in a production or staging environment, and then processing it offline. In

an offline environment, it is possible to analyze the captured trace (e.g., for a visual

display) or even replay the system to replicate the observed behavior and potentially

ease the debugging process.

Replay tools typically strive to ease debugging for parallel and networked systems

by providing deterministic replay. Networked systems are notoriously difficult to

debug due to race conditions and non-deterministic behavior, making it difficult to

detect and replicate bugs.

Numerous approaches have been used to capture execution traces, spanning

hardware-level (e.g., [7]), OS-level (e.g., [25]), user-space (e.g., [36]), and even cross-

layer designs (e.g., [30, 81]). The various approaches frequently make tradeoffs in

terms of logging overhead, types of applications they can support, whether they can

replay a trace deterministically, and even relaxations on the replayed execution trace

(e.g., [4]).

Benefits: Logging and Replay have two primary benefits. First, they focus on

using the actual system instead of a model. This allows developers to use the

tools directly with existing systems with little or no modification. Indeed, some

logging/replay tools are even targeted to be low-enough overhead for production

systems.

Second, logging and replay tools typically provide repeatability. When debugging

a complex networked system, the ability to replicate a bug and inspect the exact

execution leading to an error can be extremely useful.

9

Limitations: Despite their benefits, logging and replay systems do have limitations

for testing large-scale networked systems. The primary limitation is that they can

only consider scenarios that actually occurred; they are designed to capture execution

traces and are not focused on testing alternative scenarios (e.g., by changing the

behavior of the environment of the system itself). The ability to test alternative

system behaviors or environments is important when evaluating a networked system

(e.g., to evaluate behavior under particular failure scenarios).

2.3 Lab and Staging Infrastructures

Another technique for evaluating networked systems is deployment at a smaller scale

before making the modified system visible to all users. Using this approach, the goal

is to subject the system to an environment very similar that of the full production

environment.

Deploying applications at a smaller scale can be accomplished in multiple ways.

First, the system can be deployed to a staging environment that is intended to

replicate or approximate the production environment. For example, Cisco maintains

a testing facility called NSite [19] on which network devices and configurations can be

tested before deployment. Infrastructures such as Emulab [97] provide a configurable

environment for networked systems, and other techniques such as PlanetLab [17],

VINI [10], and CABO [27] provide a virtualized environment. DieCast [41] is unique

approach in which the full system is emulated on a smaller set of physical resources.

Another methodology used in practice is deploying changes to a limited set of

users. For example, PPLive has commented that before distributing a new version

of their client software, they first designate a particular live streaming channel as a

“test” channel. Users who join the test channel are upgraded to the new software,

10

and PPLive monitors the performance for clients in the test channel. Even Google’s

large-scale distributed web infrastructure uses a similar approach [85] in which a

portion of users may be included in one or more concurrently-running experiments.

Benefits: The primary benefit of lab and staging environments is that the actual

networked system is executed without requiring modeling. In particular, it may be

possible to capture bugs or test the system’s performance under synthetic workloads

or workloads captured from production systems.

Another major benefit of staging environments using real users is that they can

incorporate actual user behaviors, thus testing the full end-to-end workflow including

the real networking environment.

Lab and staging infrastructures also offer some control over the testing environ-

ment and parameters. For example, if using Cisco’s NSite [19] facility, one could test

the behavior of a network configuration under various router failure scenarios. It

may also be possible to control the testing scenario when deploying to a limited set

of users as well. For example, PPLive may choose the select a test channel based on

the expected size of the channel or the types of users expected to view the channel.

Limitations: While lab and staging infrastructure have benefits, they also have

important limitations. First, deploying and maintaining an alternate staging infras-

tructure may be costly. Such a staging infrastructure should be consistent with the

production network in terms of not only configuration and topology, but also hard-

ware, operating system, and software versions, since behavior may change between

versions (e.g., [18]). Keeping such an environment synchronized with a production

environment can be a large undertaking.

Second, alternate staging environments may not fully capture the complexities

of the production environment. For example, networked applications such as video

11

streaming can be sensitive to network management policies (e.g., Comcast Power-

Boost [20] and rate limit [9]) implemented by some ISPs or poor peering between

some ISPs may have large impacts on performance.

Third, allowing the tested system to serve real users may be risky if the system

being tested does not perform as desired. Though it may be possible to reduce

exposure by early detection of such cases, dissatisfied users may abandon use of a

product or move to a competitor.

2.3.1 Summary

In this chapter, we have discussed existing approaches towards testing networked

systems. Though each of them has unique benefits, there are important limitations

motivating the need for accurately testing networked systems on the production

infrastructure, while simultaneously protecting users being served by the production

system.

12

Chapter 3

Dual-System Architecture

To address the limitations of existing testing techniques for networked systems, our

novel Dual-System Architecture provides unique but complementary capabilities. In

this chapter, we present the key architectural components and concepts for dual

systems.

A key insight towards supporting dual systems is that consideration for a net-

worked system’s internal semantics can provide substantial benefits. Furthermore,

despite diverse application semantics, there is a common, abstract framework for dual

systems. When instantiating dual systems in different contexts, we observe that this

architecture is capable of simultaneously achieving efficient resource usage, a realistic

and accurate experimental platform, and avoiding disruption to users. By support-

ing these capabilities, networked systems can be safely tested using the production

infrastructure achieving both a realistic and scalable testing environment.

The goal of the architecture presented in this chapter is to illustrate the key

architectural components of dual systems that enable these benefits. It is important

to note that though the implementation of particular components may differ when

applied to different systems, the architectural components remain the same.

13

Figure 3.1: Components of the Dual-System Architecture.

Figure 3.1 illustrates the Dual-System Architecture, and remainder of this chapter

presents the key components of this architecture.

3.1 DS-Enabled Instance

The first component of the Dual-System Architecture is a DS-Enabled Instance,

which is a single physical or logical entity (e.g., network device, running copy of

an application) capable of concurrently executing both production and test versions

of a system.

Within the dual system D = (IP , IT), there exists a set of instances of the pro-

duction system IP and a set of instances of the test system IT .

Instances of the production system may communicate within the Dual-System

Boundary (defined later), and instances of the test system may communicate within

the Dual-System Boundary.

14

Dual systems provide capabilities to exploit commonalities between two versions

of the same system. In particular, a DS-Enabled Instance supports efficient state

management and resource sharing.

3.1.1 Merged State

Both the production system and test system may have certain state information in

common. Let SP and ST denote the state maintained by both the production and

test system. It may be more efficient to store SP

⋃

ST together than to store SP and

ST independently. For example, the benefits of this approach have been illustrated

in ShadowNet and related work [34], where the memory used for such state is both

limited and expensive due to speed requirements.

3.1.2 Resource Scheduler

When running both the production and test systems concurrently, the physical re-

sources (e.g., CPU, memory, storage, network) used by both systems must be moni-

tored and controlled. As a simple example, a DS-Enabled Instance may be designed

to provide a higher priority to handling tasks that will be visible to end-users.

Beyond simple resource sharing policies, by considering the semantics of the sys-

tem, resource sharing can be achieved that would be impossible by treating the

networked system as a black box. This capability is used in ShadowNet to support

cases when sending both production and testing traffic may oversaturate network

link capacity.

15

3.2 System Boundary, Tasks, and Outputs

Next, the Dual-System Architecture must consider how to map its internal state and

behavior to a consistent view seen by external entities (e.g., users or other systems).

Specifically, there may be a set of external systems X which rely on output

from D and/or send input (tasks) to D. The Dual-System Boundary is defined as

the interface between D and X. Note that external systems may be dual systems

themselves, but they observe a single, consistent view from D.

When both the production and test system are running concurrently, each may

be capable of handling tasks from external systems, and each may be capable of

producing outputs to external systems. Let TX→D denote the set of tasks assigned

to the dual system from external systems. Similarly, let OD→X denote the outputs

sent to external systems.

The task assignment component may deliver tasks from TX→D to the production

system, test system, or both. It may also delay delivery for tasks or discard them.

Similarly, the output mapping component may construct the output OD→X from the

production system and/or test system.

For a proper interactions with external systems, the output OD→X from D should

be consistent with the output that would be observed if only a single system were

used. However, it is important to note that the output OD→X does not need to be

identical to that produced by either the production or the test system. In particular,

the dual system permits the output from both the production and test system to be

merged.

Beyond mapping tasks from external systems to the production and test sys-

tems, the Dual-System Architecture permits tasks to be redistributed between the

production and test systems.

16

3.3 Dual-System Management

Finally, the Dual-System Architecture includes a management and monitoring com-

ponent. This component handles the deployment and control functions (e.g., start,

stop, etc) for the production and test systems. It also provides monitoring capabili-

ties for resource usage and other runtime metrics of interest.

Beyond standard management and control functions, the management component

allows the task assignments and resource usage to be changed dynamically as the

production and test systems are running. The ability to shift task assignments

enables ShadowNet to enable new network configurations across a network without

disruption to user traffic.

3.4 Discussion

Though there are similarities to virtualization, there are important differences. In-

deed, an approach to testing networked systems may be to construct a virtualized

environment in which the production and test systems run independently. Even in

such environments, it is possible to to achieve certain degrees of resource sharing

(e.g., [59]), but such techniques intentionally avoid consideration for internal seman-

tics of a system. As a result, many virtualization techniques are immediately usable

in a variety of settings.

Instead, the insight provided by the Dual-System Architecture is that there can be

substantial benefits to considering the internal semantics of a networked system. In

particular, the task assignment, output mapping, and task redistribution components

are not provided by standard virtualization techniques, since they may harm the

isolation that virtualization typically tries to provide.

Consider a generic example illustrated in Figure 3.2. In this example, there

17

Figure 3.2: Resource Sharing oblivious to internal semantics.

is a resource on the production infrastructure (e.g., bandwidth), with normalized

capacity 1, that is shared by the production and test systems. Individually, each

system induces a load less than 1, so the load may be satisfied if each system were

running alone. However, the total load when both are running concurrently cannot

be satisfied. There are then two options when both production and test systems

run concurrently: drop a portion of the production system’s load, or drop a portion

of the test system’s load. However, dropping a portion of the production system’s

load may cause disruption to users, and dropping a portion of the test system’s load

may impact the accuracy of performance tests executing on the test system. In

this dissertation, we see that considering internal semantics and requirements of the

production and test systems can be a powerful technique in resolving this conflict and

achieving both requirements. This is exemplified by the Adaptive Task Reassignment

scheduler in PEAC and Packet Cancellation algorithm in ShadowNet.

18

Chapter 4

ShadowNet: Dual System for

Network Configuration

We first present ShadowNet, an instantiation of Dual Systems for network configu-

rations.

4.1 Background and Motivation

Modern IP networks are becoming increasingly complex to configure, as these net-

works continue to evolve to offer multiple services (e.g., both routing and access

control), integrate equipment from multiple vendors, and conduct continuous per-

formance and feature tuning. As a result, it is difficult to generate and maintain

the configuration even for a moderately-sized network. A recent survey [73] found

that configuration errors are a large portion of operator errors, which are in turn

the largest contributor to failures and repair time. Another survey [52] found that

more than 60% of network downtime is due to human configuration errors. It fur-

ther showed that more than 80% of IT budgets are allocated towards maintaining

19

the status quo, a percentage that will only increase due to “increased complexity,

lower budgets, and continued business demand.”

4.1.1 Complexity of Network Configuration

Network configuration management is a difficult and complex task. We posit that the

reason for human error is not primarily due to carelessness or insufficient knowledge,

but rather the complexity of the environment that must be managed.

First, the final configuration depends on the whole network processing environ-

ment: the hardware, firmware, and software features (including the bugs!) of the

routers. Typical networks are heterogeneous networks consisting of equipment from

multiple vendors with distinct hardware, firmware and software features. As an ex-

ample of the complexity, a survey [67] of 31 production networks found that over

200 different software versions were running on multiple hardware platforms. As

another example, some routers may also offer special non-standard features (e.g.,

Cisco-specific BGP decision steps in addition to the conventional BGP decision pro-

cess [98]). As yet another example, the Cisco document [18] reports a common OSPF

routing problem related with forwarding addresses. The reachability issue was caused

by a bug in Cisco IOS before Release 12.1(3).

Second, the interactions of multiple services can be a source of configuration

errors. Today’s networks are complex and certain behaviors may only arise when

two features interact. As a simple example, the routing protocol can compute a

backup path but all packets rerouted to the backup path can be dropped by a packet

filter. Most tools typically focus on a single piece or set of functionality (e.g., routing,

access control, or QoS).

Finally, on the forwarding plane, the performance depends on traffic demand

pattern, FIBs, hardware capability, and software implementations. If a tool con-

20

ducts performance evaluation based on a very coarse-grained model (e.g., a link is

characterized by two simple numbers such as propagation delay and bandwidth),

performance problems may not be revealed.

4.1.2 State of the Art

One way to reduce configuration errors is to use configuration generation tools (e.g.,

[6]) and/or validate the configuration files using static analysis or simulation (e.g.,

[26, 28, 43, 69, 98]). Although these tools can be quite useful, for example, it has

been noted that the configuration analysis tool NetDB provides AT&T significant

cost savings [86], these tools are inherently limited in the problems that they can

detect. In particular, since configuration files alone do not determine the behaviors

of a network, analyzing only the configuration files based on an abstract model of

the network and equipment behaviors may leave many problems undetected (e.g.,

due to forgotten network equipment or network connectivity).

Recognizing the limitations of static analysis and simulation tools, some network

operators and equipment vendors build test networks. For example, Cisco has built

the NSite [19] facility to test network configurations before actual deployment. How-

ever, for most companies, the cost of maintaining a testbed sufficiently similar to the

operating network is prohibitive.

Given the limitations of these existing approaches, configuration modifications

are frequently deployed into the operating networks without realistic testing. As a

contrast, software developers depend mostly on debuggers and actually running their

programs before deployment. They run unit and regression tests for correctness and

conduct stress tests to validate the programs under load. It would be difficult to

imagine the extent of software errors if programs were deployed after only passing

through analysis or simulation tools without actually running on the target platform.

21

However, there is no such capability for IP network configuration [70].

4.1.3 ShadowNet Overview

To address the complexity of managing network configurations, we propose a novel

capability called shadow configurations. With shadow configurations, a network op-

erator may specify two configuration files for a router: one real (current) and one

shadow (alternate). The shadow configuration files on a set of routers form a shadow

configuration that the network operator intends to replace the current configuration

files. The operator can test the shadow configuration files on the actual network

without enabling them as the network’s real configuration. Running on the existing

network infrastructure, this capability is low cost, and thus may be utilized in daily

operations. During the testing process, the current network configuration is still run-

ning and forwards real traffic; the shadow configuration carries only testing traffic

and will not cause disruptions to the operation of the current configuration, even if

there are errors in the shadow configuration. The operator conducts correctness and

performance tests on the shadow configuration. Our usage of the term “shadow”

is motivated by computer graphics, where instead of directly modifying the current

display buffer, the display system often uses a shadow buffer to compute the next

frame to be displayed.

In particular, by running a set of configuration files directly on the actual network

to which they will be applied, a shadow configuration allows a network operator to

evaluate the integrated effects of alternate configuration files, router software im-

plementation (including incorrect protocol implementations!), the physical network

status, and dynamic information such as imported external route advertisements.

Many integrated effects on routing are naturally summarized by the forwarding in-

formation base (FIB) at each router. We take advantage of the compact FIB rep-

22

resentation and develop techniques to analyze the FIBs for configuration validation

and adjustment.

Further exploring its benefits, we show how shadow configuration allows a network

operator to evaluate, before actual deployment in the real network, whether a set

of configuration changes will have the desired effect on network performance. Such

realistic performance evaluation reduces the dependency on unrealistic models or

assumptions of router processing or the network. Also, the availability of the on-

going real traffic in the actual network allows the operator to duplicate a controlled

portion of it as testing traffic in addition to generated testing traffic. This reduces the

need to generate realistic testing traffic patterns. One potential issue of conducting

testing on the shadow configuration is that if we naively send both shadow and real

traffic, the combined traffic may overload some network links. Thus, we develop a

novel technique, referred to as packet cancellation, to allow both real and shadow

traffic to be forwarded in parallel without overloading the network.

After the operator is satisfied with the new configuration, she can simply quickly

and smoothly swap the real and shadow configurations with minimal network disrup-

tions. We develop a commitment capability for shadow configurations to reduce the

effects of churn and convergence. This usage pattern can be viewed as “two-phase

commitment” for network configurations.

To demonstrate feasibility, we extend the Linux kernel and implement necessary

components to support shadow configurations in both Quagga [77] and XORP [44]

software routers. We show that shadow configurations can be implemented efficiently,

with only 12 additional lines of code on the kernel’s forwarding fast path for packets

not using packet cancellation, and no code changes to routing processes. The FIB

memory increase to support both real and shadow configurations is less than 35% for

the worst-case router under a variety of shadow configurations for a large US tier-1

23

ISP; the average is much smaller, less than 7%. At run time, our shadow-enabled

forwarding engine under heavy traffic has no more than 1.2% CPU usage overhead

with a shadow configuration installed.

We also demonstrate the usage of shadow configurations. We show in real im-

plementation that the commitment ability avoids the transient routing convergence

period under router maintenance, shutdown and OSPF weight changes. We demon-

strate our packet cancellation technique in a usage scenario where the operator tests

the impact of a new configuration on a streaming video application. In this case, the

combined (raw) shadow and real traffic intensity can be as high as 1.05 times the

capacity of some links. However, packet cancellation shields real traffic from shadow

traffic while at the same time, the measured performance of the shadow video streams

is close to the case when it is using the network alone (difference is less than 1%).

In summary, we have made the following contributions:

• We propose the novel capability of shadow configurations.

• We develop novel techniques for configuration analysis, evaluation and manage-

ment.

• We provide an implementation and demonstrate that the shadow configuration

capability can be implemented with low overhead.

4.2 Motivating Usage Scenarios

To drive our system design, we conducted a survey of operator configuration usage

scenarios. Below, we list several key usage scenarios that we would like to support

using shadow configurations. The objective of the list is not to be complete, but to

motivate our design.

Equipment Maintenance, Testing: A network operator may need to shutdown

24

a running router or link for maintenance. For example, many hardware and software

updates suggest that a router or network interface card be taken offline during the

process. To prepare for a shutdown, the operator makes the shadow configuration

the same as the real configuration except that the link or router to be shutdown

does not appear in the shadow configuration. The operator evaluates the shadow

configuration, makes potentially necessary adjustments, and then commits it as the

real configuration.

As another example of an equipment shutdown usage scenario, a surveyed op-

erator commented that he needs to periodically shutdown a primary link to test if

its backup link is operational and will be used after network reconvergence. Since

the capacity of the backup link may be lower than the primary link, such tests may

cause network disruptions. With shadow configurations, he can just shutdown the

primary link in the shadow configuration and test if the backup link will be used in

the shadow configuration after reconvergence.

After the maintenance or addition of a new network device, the operator includes

the device in the shadow configuration, evaluates the effects, and makes adjustments

before switching to the new configuration. This step can be particularly useful as

multiple surveyed network operators commented that it is common for issues to arise

after a maintenance upgrade.

Configuration Parameter Tuning: Many network operators need to tune con-

figuration parameters to address performance or security issues. For example, a

network operator may conduct traffic engineering to improve network performance,

and many traffic engineering techniques (e.g., [29,31,72,78]) require the modification

of configurable parameters (e.g., OSPF weights or egress point selections). However,

such parameter adjustments may cause disruptions due to human error or routing

reconvergence. As another example, a network operator may change its network

25

access control list. However, such changes may lead to network disruption due to

misconfigurations or unexpected interaction with routing. Shadow configurations

support such tuning of parameters and testing correctness and performance.

Network Diagnosis: One problem with network diagnosis is that it is difficult

to conduct root-cause analysis (e.g., end-to-end performance violations). Although

many network diagnosis techniques have been proposed lately (e.g., [14, 23, 46, 49,

53, 56, 79, 83, 84]), a major limitation of network support is that they cannot easily

conduct unit or “destructive” testing [86] as is done in software debugging. Shadow

configurations allow a network operator to construct a shadow network on a subset

of the network, and compare the differences in the real and shadow configurations

to help with root-cause analysis. In particular, the delta [100] testing technique for

software debugging can be particularly helpful to the automation of configuration

debugging.

Feature/Service Testing: A network operator may be reluctant to enable new

features (e.g., queue management or scheduling algorithms) or services (e.g., VoIP)

on her operational routers due to concerns of unknown performance impacts, as many

factors affect network performance [16,66,93,101]. Shadow configurations allow the

operator to conduct an evaluation in the shadow configuration. She can finally

commit the shadow configuration as the real one once the integration is verified to

work correctly.

4.3 System Overview

We now present an overview of our system. The key components in our system are

shown in Figure 4.1. We focus on a high-level overview in this section. Details and

implementation of several components will be discussed in the following sections.

26

���������� 	����

������� ������ ����������

���� !"#$% �� &$�$!'('�%

)*+, -./0 1234

56789: ;7<8:=8>6 ?9<>@9A

BCDEFGHIJKLMIN OPQ

RSTUVW XTYTZ[\[Y]

^_``ab`cdb

efghijklmnifg opql rgnqlhmsq tuv wxwyz{|{ }~���� ������� �������

���������������

�����

�� ¡

¢£¤

¥¦§¨

©ª«¬

®¯°

Figure 4.1: System architecture for network management with shadow configura-
tions.

We divide our system into three layers: (1) forwarding engine; (2) run-time

shadow management layer; and (3) configuration management.

4.3.1 Forwarding Engine

Foundation

The key component is a forwarding engine supporting both real and shadow config-

urations. In this discussion, we focus on the forwarding information base (FIB) for

presentation, but note that the forwarding engine handles other items such as access

control lists (ACLs) as well.

Let {1, · · · , N} be the set of routers in a configuration. Let C = {C1, · · · , CN} be

their configuration files. In abstraction, the control plane converts the configuration

files into a configuration for the forwarding plane: C ⇒ {fibi}i, where fibi is the

FIB at router i. The FIB entries at an interface maps a destination IP address to

an output interface.

We refer to a set of connected routers running a shadow configuration as a shadow-

running network or srnet for short. In this dissertation, we consider only the case

27

srnet

±²³ ´²

µ¶¶·¸¹º »¼

½

¾¿À ÁÂÃÄ¿Á

ÅÆÇÈÉÊ ËÌÇÍÍÎÏ

ÐÑÒÓÔÑÕ
Ö×ØÙÚÛ ÜØÝÞßàá ÙâÚÜÜßÙ

Figure 4.2: Network with an srnet being used to install a new router to support new
services. The new router has its real configuration disabled during installation.

where a srnet belongs to a single autonomous system (AS). A srnet is likely to be

the whole IP network of the AS, but can be only a subnet. The latter possibility

gives flexibility such as incremental deployment. A router i inside a srnet has two

configuration files: Cr
i for the real configuration and Cs

i for the shadow. In the

forwarding engine, it will then have two FIBs, (fibri , f ib
s
i), for the real and shadow

respectively.

A link (interface) may leave a srnet, and we refer to such a link as a border link.

The FIB at such a border link will need to contain ingress and egress policies for

how to handle incoming and exiting shadow packets. Figure 4.2 shows a network

containing a srnet.

When a packet arrives at a border link of a router i, the router uses the ingress

policy to determine whether it should apply fibri or fibsi . We refer to a packet

forwarded using the shadow configuration as a shadow packet, and a packet forwarded

according to the real configuration as a real packet. Router i uses a shadow bit in

the IP header to indicate whether it is a shadow packet or a real packet.

When another router j receives a packet, it checks whether the packet is a real

packet or a shadow packet, and uses the corresponding forwarding table. If it is a

shadow packet and is leaving the srnet, the egress policy is applied (e.g., dropped).

28

Shadow Bandwidth Control

With both shadow and real traffic using the same network, we need a shadow band-

width control component to regulate the bandwidth sharing. In particular, testing

the performance of a shadow configuration should not cause disruption to the real

traffic. We focus on network bandwidth, but one could also consider processing band-

width. For example, per-packet processing such as IP lookup may be the bottleneck.

We support three modes of shadow bandwidth control:

• Priority: real traffic has higher priority than shadow;

• Partition: each configuration is allocated a portion of bandwidth;

• Packet cancellation.

Priority and partition modes can be useful, for example, when the payload must

be carried end-to-end to include the responses of end hosts and servers or when

evaluating deep-packet inspection. In the partition mode, the network operator can

specify non-work conserving scheduling for shadow packets to provide “scaled-down”

testing bandwidth and arrival processes. Note that if the objective is to predict

shadow configuration network performance, then the first mode is less useful as the

bandwidth allocated to the shadow configuration is unpredictable.

Packet cancellation is designed to allow an operator to conduct stress tests on the

shadow configuration to reveal issues under higher load. The operator can certainly

try to wait for a time period when the real traffic is low. However, there may not exist

such a time period, or the real traffic load that the operator would like to duplicate

for testing happens only when the real traffic is relatively high. Packet cancellation

has the following two objectives:

• Performance of the real traffic is not severely degraded;

• Performance measurements taken from shadow packets should be close to the mea-

29

surements that would be observed if the shadow configuration were the only active

configuration.

Packet cancellation is presented in Section 4.5.

4.3.2 Run-time Shadow Management

Our next layer provides two main functions:

• It provides a run-time and management environment for real and shadow con-

figurations and routing processes (e.g., multiplexing of control packets, CPU and

bandwidth management). We discuss one implementation in Section 4.7, includ-

ing a technique for exchanging information with routers outside a srnet (e.g., with

BGP) that presents a single consistent view to the outside world.

• It provides a commitment capability to smoothly swap the configurations, which

is important for many usage scenarios. This is especially desirable because the

convergence process is a major source of disruption: reconvergence after a configu-

ration change can cause network outages [3] or additional configuration errors [51].

We present our commitment protocol in Section 4.6.

4.3.3 Configuration Management Layer

This layer provides multiple utilities to take advantage of and control the capability

of shadow configurations. We have implemented the following tools:

• Configuration user interface (CUI): the operator is presented with two command-

line terminals, one real and the other shadow. Using this interface, a network

operator issues traditional router commands such as traceroute and ping. Addi-

tional commands are provided to control our commitment protocol.

• Shadow traffic control (STC): the operator is allowed to specify shadow traffic (e.g.,

30

real traffic to be duplicated to the shadow configuration and intensity of generated

shadow traffic) and collect traces.

We have also investigated other useful tools:

• Shadow configuration analysis using FIB (SCAF): a tool to detect routing loops

and reachability issues. We give more detail on this tool in Section 4.4.

• Shadow regression tester (SRT): a tool to play test cases (e.g., reachability of

important applications at important locations).

• Configuration delta debugging (CDB): a tool based on the observation that by

comparing the FIB and performance of the real configuration with the shadow

configuration, we can automate a large fraction of configuration diagnosis.

4.4 Runtime FIB Analysis

In this and the next two sections, we present the details of shadow configuration anal-

ysis using FIB, packet cancellation, and shadow commitment. They are presented

in this order as this is a common order in many usage scenarios.

4.4.1 Objectives and Overview

With the availability of a shadow configuration, the network operator can analyze

{fibsi}i before they become installed for real packet forwarding.

In particular, we investigate how to detect forwarding loops using the collection

of FIB states. As made evident by measurement results [45] and online detection

algorithms [96], forwarding loops happen frequently in real networks. Since routing

loops can cause unnecessary load and dropped packets, detecting loops caused by a

new configuration before its actual deployment can have great value. Our system

31

computes the set of destination addresses as well as routers present in the loop,

providing the network operator with detailed information from which she can debug

the problem.

We also detect reachability issues, another common type of configuration er-

rors [57, 98]. Some reachability issues can be extremely challenging to detect using

any static analysis or simulation tools because they depend on software implementa-

tion. For example, the Cisco document [18] reports a common OSPF routing problem

before Cisco IOS Release 12.1(3) related with forwarding addresses. The reachability

issue noted was caused by the software implementation of a Cisco-specific optimiza-

tion, and thus can be difficult to isolate using only configuration files. By looking

directly at the FIB states, our system can bypass detailed modeling and abstractions,

and provide the network operator useful reachability information to help debug the

problem.

Note that for presentation clarity, we consider only unicast addresses; we assume

that there exists a unique nexthop in each FIB for a single destination address.

Also note that it is straightforward to add other forwarding mechanisms (e.g., label

switched paths) to our analysis.

4.4.2 Representative IP Addresses

A major complexity in reachability and forwarding loop analysis is that FIB lookup

in modern routers is implemented using longest prefix matching, and different routers

in the same network may have different sets of destination IP prefixes.

To use existing efficient graph algorithms to check reachability and forwarding

loops, we first preprocess FIBs to compute representative IP addresses. With repre-

sentative IP addresses, FIB analysis is done on individual IP addresses, without the

need to handle longest prefix matching.

32

Consider a simple example where each FIB table in the network consists of the

following destination IP prefixes: a default route (i.e., 0.0.0.0/0), 10.1.0.0/16, and

10.1.0.0/24. Then if we verify that there is no reachability or routing loop problem

for each IP address in the set {0.0.0.0, 10.1.0.0, 10.1.1.0, 10.2.0.0}, then the network

has no reachability or routing loop problem.

The algorithm findrepip (Figure 4.3) computes the set A of representative IP ad-

dresses for a network. The algorithm computes the set Ai of representative addresses

for each FIB fibsi . The set A for the whole network is obtained by merging the Ai’s.

To make the merging efficient using a priority queue, the algorithm maintains each

Ai to be sorted.

When processing each entry in fibsi , the algorithm adds to Ai up to two addresses.

The first is the beginning address of the destination prefix associated with the entry,

and the second is the beginning address of the next range that could come after the

entry’s destination prefix.

4.4.3 Computing Reachability and Loops

Once the set of representative addresses is found, each address can be analyzed using

standard graph algorithms to detect reachability issues and forwarding loops:

1. Reachability: (1) set of routers Ra that can reach address a; and (2) set of

routers Wa with FIB entries for address a but cannot reach address a;

2. Forwarding loops: sets of routers La participating in forwarding loops for ad-

dress a.

Figure 4.4 shows the checkfib algorithm to compute reachability and forwarding

loops for each representative address. For each representative address a, checkfib

first constructs the forwarding graph induced by the FIBs in the network. This

33

findrepip({fibsi}i) – Compute representative address set A
01. foreach fibsi do

02. Ai ← ∅ //sorted rep addr for fibsi
03. foreach entry e in fibsi do

04. Ai ← Ai ∪ {min{e.addr range}}
05. if max{e.addr range} 6= 222.255.255.255 then

06. Ai ← Ai ∪ {1 + max{e.addr range}}
07. endif

08. endfor

09. endfor
10. // Merge rep addr into single sorted list
11. A← priority queue merge({Ai}i)
12. return A

Figure 4.3: Algorithm for computing representative addresses given {fibsi}.

checkfib(A, {fibi}i) – Compute
Loops La for each rep addr a
Routers Ra with reachability to each rep addr a
Routers Wa with FIB entries for a but no reachability to a

01. (La, Ra,Wa)← (∅, ∅, ∅) for a ∈ A

02. foreach a ∈ A do

03. (da, Ga)← makegraph(a, {fibi}i)
04. Ra ← computereachable(da, {fibi}i)
05. // Find routers with FIB entries but no reachability
06. Wa ← Na −Ra

07. // Find induced subgraph on nodes without reachability
08. G′

a ← inducedsubgraph(Ga,Wa)
09. La ← findloops(G′

a)
10. endfor

Figure 4.4: Algorithm for checking FIB consistency for rep addr A.

is achieved by invoking makegraph, which is shown in Figure 4.5. We define the

forwarding graph to have a directed edge (i→ j) if router i is reachable from router

j. That is, router j has an FIB entry for the destination address with nexthop i.

Thus, makegraph computes this induced subgraph Ga = (Na, Ea) and also locates

the router da in the network that is the destination for the particular address. For

simplicity, we assume that no two routers are configured as the destination for the

34

makegraph(a, {fibi}i) – Compute
Forwarding graph Ga = (Na, Ea)
Destination router da

01. da ← EXTERNAL

02. (Ea, Na)← (∅, ∅)
03. foreach router i ∈ N do

04. ni ← lookup(fibi, a)
05. if i = ni then // Found destination router
06. da ← i

07. elseif ni 6= −1 then // Update graph
08. Na ← Na + i

09. Ea ← Ea + (ni → i)
10. endif

11. endfor
12. Ga = (Na, Ea) // Construct graph
13. return (da, Ga)

Figure 4.5: Subroutine for constructing forwarding graph for destination address a.

same address; such cases are directly reported to the operator. One subroutine

invoked by makegraph is the lookup subroutine, which executes an FIB lookup for

a particular FIB and input address. It returns −1 if there is no forwarding entry for

the address, and the router itself if the router is the final destination for the address.

If there is no router in the network that is the final destination for the address, the

destination router is set to the virtual node EXTERNAL. The EXTERNAL node

in the graph is implicitly reachable from all egress routers in the network.

After computing the forwarding graph, checkfib invokes the computereachable

subroutine and which uses a depth-first search on the forwarding graph starting at

da to compute the set of routers that have paths to the destination. It is simple

to see that no loops can be be present in this set, since any router participating in

a loop cannot have a link to the destination address. Because of the definition of

the forwarding graph, any router visited in the search has a path to the destination.

Since computereachable is a depth-first search, its running time is O(N + E).

35

In addition to Ra, the reachability analysis also computes the set Wa of routers

in the network that have an FIB entry for the destination address a, but do not

have a forwarding path to the destination. This property is of interest to a network

operator since it could indicate inconsistency between their intentions and the state

of the network. It could also be used to verify access control rules implemented by

filtering route advertisements. It is simple to compute since it is the set of routers in

the forwarding graph Ga from which da is not reachable. Since each router can be

assigned an integer value 1, . . . , |N |, this set difference is computable in time O(N).

To locate loops, we next produce the subgraph G′

a induced by routers without

reachability. Loops in G′

a are located by the findloops subroutine, which detects

loops by performing repeated depth-first searches on the routers in the graph. When

a backedge in a depth-first search is found, the set of routers in the loop is added

to the result set. By overlaying the queue of unprocessed routers as a doubly-linked

list on top of the routers, the overall cost of repeated depth-first searches can be

remain as O(N + E) since finding the next router to start the next DFS becomes a

constant-time operation. Enumerating the routers in a loop is an O(N) operation,

making the total running time O(N + E + NC) where C is the number of loops

found.

4.5 Performance Testing with Packet Cancellation

With a consistent and reachable forwarding state, the network operator next might

ask, “If I adopt this alternate configuration on my network, how will it perform?”

Such a question is important when deploying new services such as voice or streaming

media, or when the operator may want to evaluate the likely impacts of the new

configuration on service level agreements.

36

At this point, the reader might suggest that since the operator already has the

FIBs of the shadow configuration, she may compute or simulate the performance

characteristics using a traffic demand matrix. This is certainly a feasible approach

and our system can support it. Such computation- or simulation-based approaches,

however, implicitly rely on a model for packet processing inside each router for fea-

tures such as QoS or any particular queue management techniques. New techniques

such as traffic shaping or differentiated services would require modifications to the

model [22]. On the other hand, enabling direct measurements allows processing

within the routers to be treated as a black box.

4.5.1 Overview

Recall that the objectives of packet cancellation are that (a) both real and shadow

traffic are forwarded according to their original queue management schemes, and

(b) shadow packets are (typically) only delayed by other shadow packets while real

packets are (typically) only delayed by other real packets.

This mode uses two techniques: packet (payload) cancellation and a virtual clock.

The key insight is that the payload of shadow data packets may not always need to

be transmitted; that is, when the focus of an evaluation is on network performance

metrics such as delay, the shadow data packets then are not intended to be received

by end hosts. Thus, we need only to (1) retain the information relevant to forwarding

the traffic within the network, and (2) know the correct payload size so that gathered

performance measurements remain meaningful.

Given the preceding insight, we allow a router to append the header of a shadow

packet to a real packet before it is transmitted over the link. The input interface at

the receiving router removes the appended shadow header, and processes it accord-

ingly. If the shadow traffic is delayed too much by the real traffic, we can append

37

pktsched() – packet cancellation and scheduling.
01. if not empty(Qr) then
02. p← dequeue(Qr) // Select real packet
03. // Append shadow packet headers
04. for 1 . . .MAX CANCELLABLE do

05. if not virtual clock expired(peek(Qs))
06. break

07. p← append(p, ip hdr(dequeue(Qs))
08. endfor

09. transmit(p)
10. elseif not empty(Qs) then
11. // Send shadow packet if available
12. if virtual clock expired(peek(Qs))
13. transmit(dequeue(Qs))
14. endif

Figure 4.6: Packet cancellation and scheduling.

multiple shadow headers to catch up with the delay.

4.5.2 Shadow Data Packet Cancellation

We now describe how our scheme processes shadow data packets. At the output

interface, shadow packets and real packets are separated into two queues, Qs and Qr.

This also allows the shadow configuration and real configuration to define different

queue sizes and queuing disciplines. When it is time to transmit the next packet,

the line card applies the algorithm shown in Figure 4.6.

Specifically, if Qs is empty, send head(Qr), the head of the real packet queue;

otherwise, extract the headers of the shadow packets that should be transmitted and

combine them with head(Qr). We may extract multiple (up toMAX CANCELLABLE,

set to 3 in our implementation) shadow packets to “piggyback” on a real packet due

to packet payload sizes and previous delay of shadow packets. To determine whether

a shadow packet should be transmitted or piggybacked, the shadow queue maintains

a virtual clock. The virtual clock estimates whether the transmission of a shadow

38

ãäå æçèéêçë ìíî

ïðñ
òóôõö÷ø

ùúû

üýþ

ÿ��
��
���

�	

Figure 4.7: Shadow packet header combined with a real packet for transmission on
a single link.

packet should be started (virtual clock expired) if there were only shadow traffic.

Note that it is important that when extracting headers from a shadow packet, we

extract all IP headers to allow the scheme to work properly when tunnels or VPNs are

configured. If any IP header that must be interpreted is encrypted, the scheme may

not work. The TCP/UDP header, if it exists, should also be extracted since it may

be required for packet filtering (e.g., in Cisco’s policy routing, NetFlow sampling, and

firewalls). In a simple IP network without tunnels or VPNs, the extracted headers

will consist of a single IP header and a TCP/UDP header, and will typically be 40

or 28 bytes in size.

There is one additional piece in the scheme. It must be possible for the incoming

interface at the receiving router to determine whether it is receiving a single packet

or combined packet. If the link-layer payload is larger than length indicated by the

IP header, the router strips off the appended headers, verifying their IP version,

header length, and optionally the checksum.

Figure 4.7 shows how a shadow payload can be canceled with a real packet for

transmission over a link. The shadow header is extracted at the receiving interface

and forwarded independently.

With packet cancellation, it is possible that the full size of the transmitted frame

becomes larger than the next interface’s MTU, causing the packets to be silently

dropped at the next hop. To handle this, one could simply decrease the MTU to

39

accommodate the additional canceled packets. To avoid additional fragmentation,

one could instead increase the MTU, but internally process packets (i.e., handle

fragmentation) at the routers according to the original MTU.

Further consideration is required when operating on Ethernet. To provide intu-

ition, the algorithm in Figure 4.6 might fill in all “whitespace” left by real traffic

with full shadow packets, causing the link utilization to approach 100% and causing

large delay variations. One simple way to solve the problem is to always transmit

only the shadow header and set a timer to throttle shadow queue transmission rate

when the real queue is empty. In our implementation, we found that the available

timers are too inaccurate to retain the appropriate packet delay variations. Thus, we

adopt the heuristic that even when the real queue is empty, only the shadow packet

header is transmitted if link utilization is above a certain threshold (we use 85%).

Since a previous hop may have trimmed a shadow packet, it may be necessary to

expand the packet and zero-fill the payload when below the threshold.

4.5.3 Shadow Control Packet Forwarding

We previously considered only shadow data packets. Packet cancellation cannot be

applied to shadow control packets, such as route advertisements, SNMP messages, or

ICMP packets. For safety and because control packets can originate from many places

(routing processes, ARP, ICMP, etc.), we opt to explicitly mark a shadow packet that

can be canceled (e.g., in generated testing traffic) with a PD bit, indicating that its

payload is drop-able. We process shadow control packets using a separate queue.

Fortunately, control packets are a very small percentage of the traffic. It is claimed

[68] that OSPF Link State Update packets consumes only 0.23 bps on average, and

similarly for IS-IS. Recent measurements [48] indicate that ICMP packets account

for only 0.2% of total traffic and 0.02% of total data on a backbone link.

40

4.5.4 Overhead and Perturbation Analysis

FIB Lookup

One potential bottleneck is FIB lookup instead of bandwidth. Since a combined

packet received in packet cancellation mode contains multiple headers that might

require separate lookups, it is crucial that the router be able to support this additional

processing burden.

Forwarding engines in many routers are designed to handle worst-case scenarios

where all incoming packets have the minimum size. In particular, assume that a

router can support α L
Kmin

packets per second where L is the link speed in bytes per

second; Kmin (typically, Kmin = 40 bytes) is the minimum packet size; and α ≤ 1 is

the efficiency factor.

Let kr denote the packet sizes of real traffic and ks the packet sizes of shadow

traffic. Let αr be the link utilization caused by real traffic and αs that of shadow

traffic. To sustain lookup, we need:

E

[

αrL

kr

]

+ E

[

αsL

ks

]

< α
L

Kmin

.

Using the packet size distribution in [48], we can compute αs given αr and α. For

α ≥ 0.7 and αr ≤ 0.8, we have αs ≥ 0.75, meaning the link utilization for shadow

traffic can reach up to 75% while still being supported by the forwarding engine.

Performance Measurement Accuracy

Our packet cancellation scheme tries to remain as consistent as possible with the

original forwarding behaviors for both shadow and real packets. This is important

since the operator must have confidence that the measurements obtained on real and

shadow traffic are indicative of the measurements that would be observed if only real

or only shadow traffic were present in the system.

41

To better understand our scheme, consider a basic model: packets have uniform

sizes, all packets have space reserved for an additional shadow header, and packets

do not arrive in the output queue when a transmission is in progress. Then, we

can show that there will be no delay or loss perturbations for either real or shadow

packets.

Claim 1. For any packet p, dr(p) = ds(p) = 0 where dr(p) (resp., ds(p)) is the

end-to-end packet delay perturbation for a real (resp., shadow) packet.

Claim 2. For any packet p, lr(p) = ls(p) = 0 where lr(p) (resp., ls(p)) is the packet

loss perturbation for a real (resp., shadow) packet.

4.6 Configuration Commitment

As we discussed in Section 4.3, with a consistent and reachable forwarding state and

satisfactory performance, the network operator may then decide to apply the shadow

configuration as the network’s actual configuration. We define the objective of the

commitment process to be swapping the shadow and real configurations at all routers

within the srnet. Swapping allows the network to rollback if an error occurs or the

operator finds the new configuration unacceptable.

4.6.1 Overview

Although there are several previous studies on updating FIBs across routers (e.g., [32,

33, 103]), our shadow configuration commitment problem is distinct from these pre-

vious problems. For example, many types of changes and routing processes may be

involved in a configuration change, so routing-protocol specific techniques (e.g., [33])

may not apply.

42

Our protocol is inspired by the simple and clean map dissemination protocol

proposed by Lakshminarayanan et al. in [61]. We address additional issues in our

specific context including integration with version control of distributed configuration

files, rollback of configurations, and simplicity of router maintenance.

To integrate with configuration version control (e.g., CVS), before each com-

mitment, the operator broadcasts two tags to each router: Cold identifies the real

configuration before swap, and Cnew the shadow configuration before swap. An ad-

ditional functionality of the tags is to mark packets to avoid forwarding loops during

the swapping period; this is inspired by the map dissemination in [61]. After com-

mitment, the tags should be removed for simplicity of router maintenance.

Consider the scenario when routers always tag packets (e.g., with global map

sequence numbers [61]), and the network operator powers on a new router. After

reading its local configuration file, a routing process (either shadow or real) must

communicate with the corresponding routing processes of its neighboring routers.

However, since the router does not know which tag denotes the real configuration

and which denotes the shadow, it may not be able to tag routing messages correctly

such that they are demultiplexed to the correct routing processes at its neighbors.

One could design various ways to work around this problem (e.g., designating globally

constant tags or a protocol to allow a router to query tags), but they introduce extra

complexity. Our commitment protocol chooses to remove the tags after commitment

so that the shadow bit has well-defined semantics (0 indicates current and 1 indicates

shadow) during normal operation.

4.6.2 Protocol Operation

The protocol proceeds in four phases. Messages to the routers are sent first using

the real configuration, then the shadow configuration in the case where the real

43

configuration is non-operational.

Phase 1: During the first phase, the operator sends a TAG DISTRIBUTION mes-

sage containing two tags to each router. The two tags are temporary network-wide

identifiers for the configurations: Cold identifies the real configuration before swap,

and Cnew the shadow configuration before swap. Upon receiving these tags, each

router creates a lookup table to remember the mapping. To report its configura-

tion file to version control (diff is enough) and to make sure that all routers have

received the tags, each router responds to the TAG DISTRIBUTION message with

an acknowledgment. The operator waits to receive an acknowledgment from each

router.

To prevent links from being oversubscribed while commitment is in process, test-

ing traffic marked with the PD bit (discussed in Section 4.5) is immediately dropped

by routers as of this phase. This is done by adding an output filter rule.

Phase 2: During the second phase, every router knows the tags, so the operator

sends a TAG PACKET message to all routers causing them to start marking packets

with tags. Since routers do not receive the TAG PACKET message simultaneously,

some packets are marked with tags and some use the shadow bit during this phase.

Packets generated at the router by a configuration are marked with that configura-

tion’s tag, and received packets already marked with tags are forwarded according

to the appropriate configuration. Tags are added to packets received without tags: if

the shadow bit is unset, it uses the tag of current real configuration (currently Cold);

otherwise, it uses the tag of the current shadow configuration (currently Cnew). If

a router has not received the TAG PACKET message but receives a packet with a

tag, it additionally triggers the router to transit to a state as if it had received the

TAG PACKET state. This indirect triggering can speed up this phase.

Before moving to phase 3, the network must wait for the following two conditions

44

�
� �� ���

��

�� ��

��

��

��

� �

Figure 4.8: Scenario showing how a transient state can cause temporary congestion.
White routers have not yet swapped; black routers have swapped.

to become true: (1) no routers are still marking packets using the shadow bit; (2)

no packets using the shadow bit are in transit.

At the second half of the Phase 2, the two conditions are satisfied. For the first

condition, the operator needs to receive an acknowledgment from each router. After

the first condition is true, the operator satisfies the second condition by waiting for

a short time (e.g., the estimated upper bound of link latency) until all packets have

been processed by the next router in their path.

Phase 3: During the third phase, since no packets will be using the shadow bit, the

routers can safely swap the configurations. The operator transmits a SWAP message

to the routers. Each router swaps the real and shadow configuration after receiving

the message, and sends an acknowledgment back to the operator. Note that the tags

associated with each configuration are not swapped. Also note that ingress routers

that have received the SWAP message now tag unmarked packets with Cnew instead

of Cold.

Phase 4: In the last phase, the operator sends a MARK SHADOW BIT message to

each router, allowing them to again mark packets using the shadow bit. To report

success, each router sends an acknowledgment back to the operator.

4.6.3 Error Handling and Rollback

There are potential error conditions during commitment. Link or router failures

cause the routing and forwarding processes (e.g., fast rerouting) to automatically

45

start to react and bypass the failed equipment. The presentation below is focused

on error conditions leading to the disruption to our commitment protocol.

Transient States: We define a transient state as a state where some data packets

use the old configuration and others use the new configuration. A potential pitfall

of a transient state is that the utilization of some links may be higher than it would

be under either of the two configurations. Consider an example shown in Figure 4.8.

Routers R1 and R2 will both change forwarding paths in the new configuration. In

Figure 4.8(a), neither has swapped and only R2 forwards through link e. After R1 has

swapped in Figure 4.8(b), the link is used by both routers, possibly causing temporary

congestion. Once R2 swaps in Figure 4.8(c), the transient state ends and the final

router is no longer using link e. Note that such transient states also can happen

under some circumstances with other approaches such as the map dissemination

approach [61].

Recovery and Rollback: During phase 1, if any one router reports an error or the

controller does not receive acknowledgments from all routers, the commitment should

abort. As a soft state design, if a router does not receive TAG PACKET before its

local timeout, it should change back to the normal state. During phases 2 and 4, if

the operation of any router is unsuccessful or times out, the operator will retry the

phase. Routers can remain in their current states, as this is not a transient state.

It is straightforward if the operator chooses to rollback to the original configuration

since the tags are already distributed and only phases 2, 3, and 4 of the protocol

need be executed.

The only phase in which a transient state can happen is phase 3. Here, it is

important for the state not to be permanent. Consider what can happen during phase

3. If acknowledgments are received from all routers, the transient state has already

ended and no rollback is necessary. If at least one acknowledgment is missing, there

46

are two possible reasons: a router did not receive or process the SWAP command, or

the SWAP is processed but the acknowledgment was not delivered. We would like to

detect the first case. Since an error may have occurred at such routers (e.g., a routing

process crashed), it may not be possible to query them directly. Thus, the operator

queries the router’s neighbors. If the router in question is tagging its forwarded

traffic (recall that only real packets are present) with Cold, then there exists a router

that has not processed the SWAP message, and the srnet should rollback. Note that

even if a router crashes during commitment, both the real and shadow configurations

of other routers within the srnet reconverge appropriately.

Proposition 1 (Safety). Packets never alternate back and forth between configu-

rations. Thus, the commitment protocol does not create any additional forwarding

loops. Also, control packets such as route advertisements are delivered correctly even

while the commitment protocol is executing.

Proposition 2 (Liveness). If for every router, commitment control messages are

delivered in finite time, and the router either responds to the messages or is recovered

offline in finite time, the srnet returns to normal operation, and the transient state

is no longer present.

4.7 Implementation

To demonstrate feasibility, we have implemented a fully operational system support-

ing shadow configurations. We now discuss in detail Layers 1 and 2 of our system

architecture. The related components are shown in Figure 4.1.

47

4.7.1 Objectives

There are three primary objectives fulfilled by our implementation: (1) identify op-

erating system configuration entities with the shadow and/or real configurations; (2)

keep CPU and memory overhead low by merging configuration entities where pos-

sible; (3) reduce code changes (e.g., to routing processes and network tools) after

introducing shadow configurations.

4.7.2 Supporting Shadow Configurations

A key issue in implementing support for shadow configurations is associating entities

maintained within the operating system (e.g., FIB entries, filtering rules, interfaces,

neighbor entries, and packets) with the appropriate configuration. To demonstrate

that this can be done with minimal effort, we present an implementation consisting

of extensions to the Linux Kernel (version 2.6.22.9). Our design is able to support

both XORP [44] (version 1.4) and Quagga [77] (versions 0.98.6 and 0.99.9) without

any source code changes to either software package. Either can be used interchange-

ably above our shadow-enabled kernel, which illustrates support in heterogeneous

environments.

Figure 4.9 shows the major components of the implementation. We emphasize

that different routers may choose different implementation as long as the messaging

format (i.e., how shadow data packets and shadow control packets are encoded) is

standardized.

Separating Configurations: Each entity is associated with a particular configu-

ration. Entities corresponding to the current real configuration are applied to transit

traffic and routing processes that communicate with the outside world, while enti-

ties corresponding to the current shadow configuration are being evaluated by the

48

!"#$% &'(#')

*+,-./0 12+345545

6789:;<=>?:78 @>8>;ABA8? C77DE

FGH IJKLMJ N

OPQRSTUVWXYZV[\]^

_`a

bcdefghijkl

mnopqrsrtur

vwxyz{|}~���� ����

�����

�������������������� ���� �¡

¢£¤¥¦§ ¨©ª

«¬® ¯°± ²³´

µ¶·¸¹

º»¼½¾ ¿ÀÁÂ ÃÄÅÆÇÈÉÊËÌÍ

ÎÏÐÑÒÓÔÓÕÖÓ

×ØÙÚÛÜÝÞ

ßàá âãäåæã ç

èéêëì

Figure 4.9: Implementation of router supporting shadow configurations: Shaded
parts are new or modified.

operator.

We append data structures for necessary entities with a mask, where each bit

position corresponds to a particular configuration. If an entity appears in more than

one configurations, multiple bits are set in the mask.

One installed configuration is considered as the real while another is considered

the shadow. This mapping is maintained in a simple two-entry translation table, al-

lowing the commitment’s swap operation to simply swap the entries in the translation

table.

Shadow-enabled FIB: We merge entries in FIB table for both configurations to

reduce memory overhead. FIB entries use a mask to indicate the configurations to

which the destination subnet belongs.

We extend the FIB lookup, insertion, and deletion algorithms to handle the

merged FIB table. If the forwarding behaviors (e.g., next hops) in the two configu-

rations are different, we record the difference inside the entry.

Other similar kernel tables, such as neighbor entries, filtering rules, and interface

addresses are handled similarly.

Socket API: Extending the kernel tables is not enough. When a userspace pro-

gram, such as a routing process or a testing tool communicates with the kernel, it

49

uses the socket API. We extend the kernel’s socket data structure to reference the

configuration to be used when transmitting packets and demultiplexing incoming

packets. Routing processes in different configurations can safely bind to the same IP

addresses and ports.

Packets: Our current packet format supports IPv4 and ARP, but the same method-

ology can be applied to IPv6 or other Layer 3 protocols. During normal operations,

each packet needs two bits: a shadow bit S, and a PD bit to indicate whether the

payload can be dropped. Both S and PD are always 0 for transit traffic. For IPv4

packets, S uses the low bit of the version field, and the PD uses the unused flag

bit. Such a mapping causes shadow packets to be automatically dropped by routers

that are not shadow-aware. Two additional bits are needed during commitment: TP

indicates whether a tag is present, and TG indicates the tag. We store TP in the

highest bit of the TOS field and TG in the next highest bit. We use the highest four

bits of the ARP header’s operation field to mark ARP packets. Note that it is also

possible to encode some or all of this information in a shim header.

Packets received by the kernel are demultiplexed according to the translation

table (and the tag assignment during commitment). A reference to the appropri-

ate configuration is stored in the packet’s data structure for usage in key parts of

the TCP/IP stack such as the routing cache and FIB lookups, ICMP errors, and

UDP/TCP demultiplexing.

Shadow-aware Programs: Since we also would like provide support for existing

programs, we allow a default configuration to be defined for a process, and the

attribute is inherited by child processes. Sockets created by a process initially belong

to the process’s default configuration. We can then launch any program within the

desired configuration.

A shell is started for each configuration to enable an operator to apply changes to

50

a particular configuration. The shell indicates whether its configuration is currently

defined as the real or shadow.

Routing Processes and Tools: In most implementations, routing processes are

normal user processes. Changing networking configurations in the Linux kernel is

primarily done using netlink sockets. By starting a routing process in the appropri-

ate shell, its sockets are associated with that configuration and the kernel interprets

the changes to entities as applying to that configuration. We configure Quagga and

XORP such that two instances can be running concurrently, allowing both a shadow

and real configuration to be deployed.

The same technique is applied to common network testing tools such as ping,

traceroute, and homegrown scripts, allowing them to operate without modification.

We use this approach with our custom traffic generation program and measurement

program used in our evaluations.

It is possible that some vendors add shadow-awareness directly to userspace pro-

cesses (e.g., to use a shared RIB to further reduce memory overhead or supporting

additional features in traceroute), while others may want to reduce code changes.

Connection to Outside: Our implementation uses proxies to handle control plane

connectivity to outside of a srnet. Such connectivity is necessary to support incre-

mental deployment and interdomain scenarios. These simple proxies can handle not

only normal operations but also shadow commitment.

Consider the example of eBGP. Suppose without shadow configurations a BGP

routing process b has a BGP peer e in another domain; that is, b has a TCP con-

nection at port 179. With shadow configurations, corresponding to b, there may be

two BGP processes br and bs for the real and shadow configurations. We introduce

a proxy bp for b. Then bp peers with the external BGP peer e (by listening at the IP

address and BGP port 179). The process bp forwards each incoming BGP message

51

from e to both br and bs, which can then apply its ingress filtering policies. Whenever

br sends a BGP message to e, it is forwarded to bp which forwards to e.

We use a novel transaction rollback technique to handle commitment with visible

external effects. Specifically, the proxy keeps a log of forwarded messages. Whenever

bs sends a BGP message to e, it is stored locally by bp. If the network swaps the real

and shadow configurations, bp computes the differences of the messages of br and bs,

rolls back the unnecessary impacts of br (i.e., withdraw different routes), and then

installs the effects of bs without disconnecting the external BGP connection.

Shadow-aware Interfaces: It is necessary for routers to drop shadow packets and

remove tags from transit packets (in the case of commitment) before exiting an srnet.

We enable a shadow-aware attribute on each interface that participates in the srnet.

Since our evaluation environment utilizes ARP, there is one additional complexity

during commitment. Egress traffic should not be delayed or possibly dropped while

it waits for the new configuration to query for the MAC address of the peering router

outside of the srnet. Thus, we configure the kernel to accept unsolicited ARP replies

and duplicate any received ARP reply to the shadow configuration for interfaces with

the shadow-aware attribute disabled.

4.8 Evaluations

We first present our methodology, then present our results in two parts. In the

first part, we present results that show that the overhead of supporting shadow

configuration is very small. In the second part, we demonstrate the effectiveness of

shadow configurations in three usage scenarios.

52

4.8.1 Methodology

Implementation: We use our implementation as described in Section 4.7.

Configurations: We use the configuration files of the two operating networks in

Table 4.1. US-ISP is a large US tier-1 ISP.

Network #Nodes #Directed Links Syntax

Abilene 9 26 Juniper

US-ISP - - Cisco

Table 4.1: Network configurations used.

We use the configurations of US-ISP only for evaluation of FIB size overhead.

The rest of our experiments use a small illustrative topology and an emulation of

the Abilene backbone. We use Emulab’s [97] 3 Ghz PCs with 1 Gbps and 100

Mbps Ethernet links. We take additional steps to load configuration data into our

emulation of the Abilene backbone. Configuration commands are translated to both

XORP and Quagga syntax. Then BGP routes from Abilene’s July 2007 BGP RIB

dumps are injected as static routes at virtual egress points, dummy0 interfaces, at

the appropriate routers. Routes for the University of Utah are removed so as not to

interfere with the Emulab addresses configured on the routers. Since the versions of

XORP and Quagga used did not support IS-IS, we translated Abilene’s configurations

to use OSPF.

Data Traffic: We use CAIDA [15] packet traces in our evaluations. When us-

ing these traces on our emulation of the Abilene backbone, we remove packets for

destination addresses not appearing in the BGP routes accepted by Abilene.

Performance Measurements: To obtain performance measurements under packet

cancellation, we use a custom utility similar to iperf that timestamps generated

packets just following the IP header and sends using raw sockets. The timestamp is

53

not lost during packet cancellation. We modify the kernel to deliver canceled packets

to raw sockets. The server computes delay between sending and receiving time, and

uses linear regression to subtract off mean delay and account for clock drift.

4.8.2 Overhead

Since we intend that shadow configuration be used in production networks, the over-

head of supporting it should be small. One reason we chose Linux is to see the

overhead in a general platform. We consider (a) data path forwarding overhead due

to additional complexity to support a shadow configuration; (b) FIB storage over-

head due to addition of a shadow configuration; and (c) FIB update overhead due

to addition of a shadow configuration.

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250

C
PU

 U
sa

ge
 (

%
)

Throughput (Mbps)

Standard Kernel
Shadow Kernel

Figure 4.10: System CPU utilization for varying traffic rates (300-byte packets).

Data Path Forwarding Overhead: Our results show that there is truly a

negligible overhead on the data forwarding path due to the additional complexity

of supporting a shadow configuration. For this test, we use a particular traffic load

both with the standard Linux kernel, and then again with our shadow-enabled kernel.

When employing our shadow kernel, we load a shadow configuration but do not

generate shadow traffic.

54

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30

C
PU

 U
sa

ge
 (

%
)

Time (sec)

Standard Kernel
Shadow Kernel

Figure 4.11: System CPU utilization for FIB updates (100 Mbps, 300-byte packets).

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

M
em

or
y

In
cr

ea
se

 (
%

)

Normalized Router ID (Sorted)

Single Router Removed

35%

 0 20 40 60 80 100

% Routers Removed

Multiple Routers Removed

35%

Figure 4.12: FIB storage overhead for topology changes in shadow configuration
(US-ISP).

55

We use a topology with 3 routers with 1 Gbps Ethernet links; there is a send-

ing, intermediate, and receiving router. The sending router uses the Linux kernel’s

pktgen module to generate 300-byte packets so we can stress-test the intermediate

router’s forwarding path. Our implementation doesn’t use any additional memory

copies for real packets, so larger packet sizes do not add overhead in our shadow

kernel.

The sending router transmits packets for 30 seconds with randomly generated

destination IP addresses in the range 10.0.0.4-10.255.255.255 to ensure that FIB

lookups (on the intermediate router) are rarely handled by the routing cache. The

intermediate router configures one default route for 10.0.0.0/8 to route to the receiv-

ing router, and also adds additional 9306 randomly generated entries from 10.0.0.0/8

with a prefix length distribution matching the global BGP tables published by the

Route Views Project on January 18, 2008 [89]. Note that there are no prefix lengths

shorter than 8. Also, 9293 routes are added in shadow configuration, with 60% of

the prefixes shared with the real configuration.

The comparison in CPU utilization between our shadow kernel and the standard

kernel are shown in Figure 4.10. The machines are hyperthreaded, so we increase

the data rate until the CPU handling the input interface interrupts reaches 100%

utilization. The reported value is the overall CPU utilization including both CPUs.

Our implementation does not noticeably increase CPU utilization as compared to

the standard kernel. Note that the full 1 Gbps capacity is not reached due to the

smaller packet sizes. Our implementation can achieve the same rates cited by [10]

for 1430-byte packets.

FIB Storage Overhead: One concern is that the number of FIB entries will

be increased. However, for most networks, the network prefixes are relatively fixed,

and thus should appear in both real and shadow configurations. Accordingly, the

56

number of entries and IP prefix lookup costs do not increase significantly. We incur a

storage overhead only if the shadow and real configurations specify different next-hop

behaviors, since otherwise only a single FIB entry is required.

Scenario Changed FIB Entries Memory Overhead

Remove NEWY↔WASH 13074 4.7%

Remove LOSA 4467 1.6%

Remove KANS 19874 7.2%

Table 4.2: FIB storage overhead (Abilene).

Table 4.2 shows the increase in FIB size across all routers for the Abilene network

due to configuration changes made in the shadow configuration. Both the real and

the shadow configurations have more than 90, 000 FIB entries. We observe these

topology changes lead to a small overall storage increase. Although in the theoretical

worst case the storage may double, in our real implementation the increase is less

than 8% due to the sharing between real and shadow next-hops. We anticipate that

this sharing is common.

To evaluate the scenarios for a larger network, we use the configuration of US-ISP,

a large tier-1 ISP. We use its backbone topology, OSPF link weight configuration,

and external routes to compute the FIB size at each router. Each router has a few

hundreds of thousands of FIB entries. The presented memory overhead is based on

data structure sizes in the Linux kernel implementation.

Figure 4.12 shows the results for two scenarios. The vertical bar denotes the

maximum and minimum per-router memory overhead, and the dark points denote

the average memory overhead over all routers. In the first scenario, we show the

memory overhead when only a single router at a time is removed from the network

in the shadow configuration. We observe that in the worst cases, the routers with

the worst FIB overhead have their FIB storage increased by no more than 35%.

57

These “worst” routers are often stub routers with low connectivity in the topology.

Thus, one way to reduce their storage, if necessary, is forwarding entry aggregation or

virtual address mapping. The average is much lower, under 5% in most cases. Next,

we show the FIB memory overhead as routers are removed one-by-one in the shadow

configuration. There is no case in which the router with the worst FIB overhead

has its FIB storage increased by 35%. The average overhead is much lower than the

worst case.

FIB Update Overhead: Since we also extend the FIB insertion and deletion

routines to handle shadow configuration, we also evaluate the performance when the

FIB is being frequently updated. We use the same setup as the prior experiment

on FIB data forwarding processing overhead, but we also randomly add and delete

between 1 and 100 routes in the real configuration in 10.0.0.0/8 each second at the

intermediate router as it is forwarding traffic.

Figure 4.11 shows the results. Again, there is no noticeable difference between

supporting shadow configuration or not. Note that when running this experiment

without the FIB updates, the CPU utilization for both our shadow kernel and the

standard kernel fluctuates much less, but both remain nearly identical for the dura-

tion of the experiment.

4.8.3 Usage of Shadow Configurations

We now demonstrate the effectiveness of shadow configuration in three usage scenar-

ios.

Equipment Maintenance: A usage scenario of shadow configuration is equipment

maintenance. We use this scenario to demonstrate the performance of our commit-

ment protocol.

In this experiment, we use the Abilene topology and configurations, and generate

58

transit traffic according to the CAIDA traces from peering routers configured at New

York, Seattle, and Atlanta. Emulab’s delay nodes are used to model propagation

delays.

In this scenario, we bring the Kansas router down for maintenance and return

it to service when finished. The real configuration is initially cloned to the shadow

configuration. Next, we disable OSPF in the shadow configuration on the Kansas

router, wait 10 seconds, then commit at time 48. The network operator may then

safely perform upgrades, and restart it when finished. Once the shadow configuration

with Kansas enabled converges, the configurations are again swapped, causing the

Kansas router to again forward transit traffic.

 75

 80

 85

 90

 95

 100

 105

 110

 0 20 40 60 80 100

R
T

T
 (

m
s)

Time (s)

Commit
before
shutdown

Short transient
 period

Swap back
after restart

Figure 4.13: RTT between peers at New York and Seattle during commitment and
rollback.

Figure 4.13 shows the round-trip time between the peering routers at New York

and Seattle. Note that there are three modes of operation at 82 ms, 92 ms, and

102 ms due to the Abilene routers asynchronously executing the swap in phase 3

of the commitment protocol. This arises because the ICMP echo request follows a

different path than the reply, due to tagging at the ingress routers. The intermediate

transition phase lasts for a short time, but the packet forwarding behavior during

this transition phase is clean and controlled. Importantly, there are no packet losses.

59

Our commitment protocol is executed over serial consoles to each router. We

are currently developing a protocol to access the routers’ configuration terminals

using both the shadow and real configurations such that the protocol is resistant to

misconfiguration in one of the two configurations.

Parameter Tuning: The next usage scenario for shadow configurations we eval-

uate is parameter tuning. We update a set of OSPF link weights simultaneously.

The real configuration uses Abilene’s normal link weights, and we then change all

of the link weights in the network to be the inverse of the bandwidth (i.e., all equal

in the Abilene case) using two methods: (1) manual configuration and (2) shadow

configurations.

To perform the manual configuration, we update the link weights using parallel

Telnet sessions, which takes about 4 seconds. With shadow configurations, we update

the link weights in the shadow configuration, wait 20 seconds for convergence, and

then execute the commitment protocol.

 70

 80

 90

 100

 110

 120

 130

 140

 0 5 10 15 20 25 30 35

R
T

T
 (

m
s)

Time (s)

Manual Configuration

 0 5 10 15 20 25 30 35

Time (s)

Shadow Commitment

Figure 4.14: RTT between peers at New York and Seattle during OSPF link weight
change.

We immediately notice in Figure 4.14 that using the shadow configuration avoids

the reconvergence process. Under manual configuration, the round-trip time be-

tween the peer routers at Seattle and New York fluctuate between 83 ms and 135

60

ms before settling on the converged value of 80 ms. Using shadow configurations

provides a quick and smooth transition since convergence takes place in the shadow

configuration prior to commitment.

New Service Testing: The last usage scenario we evaluate is testing of new

services. We use this scenario to demonstrate our packet cancellation technique and

show that (1) there is little effect on transit traffic and (2) performance measurements

on shadow traffic are indicative of its true performance.

Real Shadow

Config Abilene configuration Abiliene configuration with 4 link weights ad-
justed for load balancing

Traffic Transit traffic generated from
CAIDA traces with 30% uti-
lization on bottleneck link

Duplicated real traffic and UDP streaming
video with 6 servers and 12 clients

Table 4.3: New service testing experiment setup.

-5

 0

 5

 10

 15

 20

 25

 30

 35

 0 10 20 30 40 50 60

D
el

ay
 V

ar
ia

tio
n

(m
s)

Time (s)

Real Only
Cancellation Enabled

Cancellation Disabled

Figure 4.15: Delay variation for real transit traffic (Seattle→Chicago).

Setup: In this scenario, a network operator is testing a streaming video application

under a new set of OSPF link weights. Our setup is shown in Table 4.3.

UDP packet traces are constructed using a high-definition movie trailer and the

VideoLAN [91] VLC software. The movie trailer alternates between complex scenes

(using up to 22 Mbps) and a black background with text (using 450 Kbps).

61

 0

 5

 10

 15

 20

 25

 30

 0 10 20 30 40 50 60

R
T

T
 (

m
s)

Time (s)

Real Only
Cancellation Enabled

Cancellation Disabled

Figure 4.16: RTT in real configuration (Salt Lake City→Atlanta).

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 10 20 30 40 50 60 70

L
os

s
R

at
e

(%
)

Time (s)

Shadow Only
Cancellation Enabled

Cancellation Disabled

Figure 4.17: Loss rate for streams (Salt Lake City server).

 0

 5

 10

 15

 20

 25

 0 10 20 30 40 50 60

T
hr

ou
gh

pu
t (

M
bp

s)

Time (s)

Shadow Only
Cancellation Enabled

Cancellation Disabled

Figure 4.18: Stream throughput (Houston→Chicago).

62

 0

 0.2

 0.4

 0.6

 0.8

 1

-0.4 -0.2 0 0.2 0.4

Pr
ob

ab
ili

ty

Delay Variation (ms)

Real at 40% Utilization

No Shad.
20% Shad.
40% Shad.
60% Shad.

-0.4 -0.2 0 0.2 0.4

Delay Variation (ms)

Shadow at 40% Utilization

No Real
20% Real
40% Real
60% Real

Figure 4.19: Delay variation CDF (illustrative topology).

With this setup, there exist time intervals when the combined (raw) real and

shadow traffic intensity exceeds link capacity on some links, meaning bandwidth

partitioning is not effective for obtaining accurate performance results.

Delay nodes are removed from the Emulab experiment since we want to observe

small-scale variations over multi-hop flows. We also use 100 Mbps links to more

easily observe delay variation given the resolution of our measurement tools.

Safety for Transit Traffic: Our experiments show that the shadow traffic has little

effect on the real traffic when packet cancellation is enabled. We show the mea-

sured performance for two paths. Figure 4.15 shows the delay variation for traffic

from Seattle to Chicago. The real traffic performance with packet cancellation en-

abled overlaps the performance when only real transit traffic is present, while the

delay variation rises sharply up to about 15 ms without packet cancellation. Similar

behavior is observed between Salt Lake City and Atlanta (Figure 4.16), where the

round-trip time increases from under 1 ms up to 20 ms without packet cancellation.

Round-trip time is largely unaffected with packet cancellation enabled.

Shadow Performance Accuracy: We next show that packet cancellation provides

accurate performance measurements despite the presence of real transit traffic. In our

63

experiment, there are multiple streaming sessions that have incorrect measurements

when packet cancellation is not enabled. For example, the throughput measurement

for the video stream from Houston to Chicago (Figure 4.18) shows the correct value

of 22 Mbps. Without packet cancellation, the measurements incorrectly show that

only 18 Mbps is supported.

Multiple video streams in our experiments also show that loss rates with packet

cancellation are indicative of the true value. Figure 4.17 shows the loss rate of streams

served by Salt Lake City. Without packet cancellation, it is erroneously reported to

be up to 14%, while packet cancellation correctly has no losses.

Fine-grained Accuracy: Finally, we show in more detail how real traffic is protected

and performance characteristics of shadow traffic are preserved under packet cancel-

lation. We use a simple illustrative topology shown in Figure 4.7 and the CAIDA

traces. Figure 4.19 shows CDFs of delay variation for both real and shadow traffic.

The observed performance for real traffic is largely unchanged as we increase shadow

traffic until raw total traffic intensity reaches link capacity (100%). Similarly, delay

variations for shadow traffic closely approximate its actual behavior.

4.9 Summary and Future Directions

In this chapter, we presented the novel idea of shadow configurations. We developed

novel techniques such as packet cancellation and shadow commitment to substan-

tially improve the capability of configuration evaluation and management. There

are many avenues for future exploration. In particular, a future direction is to more

fully integrate shadow configurations with automated configuration debugging and

network diagnosis.

64

Chapter 5

PEAC: Dual System for Internet

Live Streaming

5.1 Background and Motivation

Live streaming distribution is an important class of Internet applications. These

applications have been used to carry not only many daily events but also major

events such as the Obama inauguration address, the 2010 Winter Olympics, and the

2010 World Cup.

5.1.1 Complexity of P2P Live Streaming

To satisfy increasing live streaming scale as well as user requirements on new features,

many live streaming distribution systems have become increasingly complex. As an

example, many modern live streaming systems are either P2P based or add P2P as

a key feature to improve scalability and fault tolerance (e.g., PPLive, CNTV, Chi-

naCache LiveSky, Zattoo). The latest release of Adobe Flash [1], a major platform

for streaming distribution on the Internet, has introduced Stratus, a P2P data ex-

65

change mode. However, a P2P based system consists of a large number of algorithmic

components and configuration parameters that interact in complex ways.

As a result of increased complexity, many live streaming distribution systems have

become increasingly difficult to understand, often operate at sub-optimal states, and

exhibit undesirable, buggy behaviors in real settings. Many live streaming distri-

bution systems release new versions that do not reach anticipated the performance

level or scale. For example, PPLive, a major live streaming distribution system,

encountered major performance issues when moved from initial deployment in uni-

versity networks to general network settings. As another example, a major category

of user complaints in the user forum of a major live streaming system [76] is poor

performance after a major product release.

5.1.2 State of the Art

Realistic evaluation is essential to the understanding and improvement of Internet

live streaming distribution systems. During our survey, a major streaming software

developer commented that “a major factor delaying our product release is concerns on

lacking of realistic testing capabilities.” However, existing testing techniques such as

theoretical modeling, simulations, and lab testing (e.g., [12,13,60,63,74,102,104]) all

have limitations for conducting realistic performance evaluation of an Internet-scale,

distributed streaming system. Specifically, lab testing is often severely limited in

scale. No testbed can easily scale above thousands of clients. Theoretical modeling,

lab testing, and simulation may deviate from reality, for example, in terms of user

distributions, capabilities, and behaviors. Furthermore, these techniques lack the

ability to provide a platform to discover previously-unknown but important, real

problems. For example, network management policies implemented by some ISPs

(e.g., Comcast PowerBoost [20] and congestion management [9]), large hidden buffers

66

(e.g., large ADSL buffers [24]) at last hop of some real networks, and poor peering

between some ISPs [58] may all have large impacts on performance. On the other

hand, the theoretical model, simulation model, or the lab setting may not include

such factors until they are discovered, much later, in real tests.

In current practice, some live streaming systems (e.g., PPLive, UUSee) use testing

channels to achieve scale (to a setting larger than their internal small lab) and realism.

Real users joining a testing channel use a different set of experimental algorithms

than the stable algorithms running on other channels. However, the testing channel

approach encounters two important, practical problems. First, passively using real

users may not provide effective performance evaluation settings. For example, a

developer may want to evaluate the effectiveness of a set of experimental algorithms

to handle a flash crowd on the order of 1000 users, but the current testing channel,

which may have a higher number of real users, say 10,000 users, does not give a

flash-crowd arrival pattern. Second, a major concern of utilizing testing channels is

that if the experimental algorithms do not perform well, users will experience poor

quality. This concern leads to conservative usage of testing channels, thus limiting

tests to a small number of real users, reducing the effectiveness.

5.1.3 PEAC Overview

In this chapter, we present PEAC a novel Internet live streaming distribution system

that integrates performance evaluation as an intrinsic capability, during production

live streaming, to take advantage of the availability of a large number of real user

clients located at real network settings. It integrates realism and experiment control

by creating experimental scenarios using real user clients. It also provides highly

scalable disruption protection for real users’ viewing experience if the experimental

algorithms do not perform well. PEAC complements analysis, simulation, and lab

67

testing to provide a more complete experimentation framework.

PEAC achieves the aforementioned objectives by utilizing the Dual-System Ar-

chitecture. In particular, the production system is the stable system, which is the

existing system with reasonable performance and typically exists in a continuously

evolving system, and test systems called experimental systems to be evaluated.

Specifically, real users are first served by the stable system during the staging

phase, during which real users begin playing while the experiment control system

waits on the triggering condition to start developer-specified testing scenarios (i.e.,

targeted arrival and departure user behaviors and the experimental algorithms). Af-

ter the triggering condition is met, the experiment control system starts the testing

phase by transparently moving a set of clients already in the stable system to con-

struct experimental scenarios of clients to be served by the experimental algorithms.

The experimental control system creates experimental scenarios using distributed

algorithms, and requires only light-weight soft-state information at trackers. The

experiment control system handles peer dynamics and uses the stable system as a

scalable control channel with fast feedback, to detect user-initiated departures and

peer failures.

A key challenge in the testing phase is how to protect the experiences of a large

number of real users running experimental algorithms. A possible scheme to protect

user experiences is to use CDN or supernodes, when the experimental algorithms

in a new version do not perform well (e.g., [42]). However, without considering

constraints such as the data flow constraints (Section 5.5.3), existing systems provide

only protection, not experimental accuracy. While PEAC supports protection using

the CDN with proper consideration for these constraints, a shortcoming of using

CDN protection, is that such sources may not always be available, be costly, or not

provide enough scalability during a large-scale experiment. For example, if using

68

only a CDN, a trial involving 50,000 real users in a channel at 400 Kbps will need

up to 20 Gbps bandwidth. If the modified feature is shared by multiple channels in

a streaming system with 2 million concurrent users, CDN load can be as high as 800

Gbps. PEAC again utilizes the dual system design. Instead of relying on a CDN or

supernodes, PEAC triggers the stable system as the first line of rescue, substantially

improving scalability.

Implementing a dual system during the testing phase, however, introduces tech-

nical challenges. Specifically, with both stable and experimental systems running,

a dual system is faced with the dual-system resource and task allocation problem.

If all resources (i.e., bandwidth) and tasks (pieces to be downloaded) are assigned

to the stable system, the dual system is guaranteed to achieve the performance of

the stable system. However, there will be no performance evaluation results on the

experimental system. On the other hand, if all resources (i.e., bandwidth) and tasks

(pieces to be downloaded) are assigned to the experimental system but the experi-

mental system performs poorly, the stable system cannot provide effective rescue as

it does not have resources and assigned tasks. To address this challenge, PEAC in-

troduces a novel scheme named Adaptive Task Reassignment to implement resource

and task assignments, achieving robust protection and experimental accuracy at the

same time.

We completely implement PEAC and demonstrate its benefits. Our implemen-

tation addresses an important practical concern of software architecture supporting

flexible experiments with real users. PEAC introduces a Compositional Runtime to

achieve efficient code and data sharing and provide online client reconfiguration at

end-user machines.

69

5.2 Motivating Use Cases

PEAC is a streaming distribution system supporting live streaming. A developer of

PEAC can use the built-in experimentation capability to conduct many experiments

in the production system. We present three use cases spanning software testing

process, scientific evaluation and parameter tuning, and new algorithm design of

large-scale network environments.

Regression Test Suite for User Performance: The developer of a live streaming

system defines a testing suite of user behavior scenarios such as flash crowd, grad-

ual arrivals, and steady state, at different scales (say, 100s, 1,000s, 10,000s users).

After developing a new version of the software, the developer should conduct regres-

sion testing, based on the testing suite, under real settings, to ensure that perfor-

mance issues are not introduced even by seemingly-unrelated changes. For example,

even changes to NAT (Network Address Translation) traversal may have impacts on

streaming performance. PEAC creates the scenarios defined in the testing suite, us-

ing user clients in the production environment, along with thresholds for acceptable

performance. These experiments may be enqueued and executed by PEAC to ensure

that the newer version has expected performance in a wide range of large-scale, real

environments before being officially released.

Parameter Tuning: A live streaming system can include many parameters (e.g.,

timeouts, upper/lower bounds for rate control, and maximum number of peers).

PEAC allows the designer to explore the parameter space in real settings by defining

an experiment with multiple scenarios to be executed in parallel for comparison

(e.g., [40]), and/or perform factor analysis to study the effects of different parameters.

Algorithm/Feature Testing: A live streaming system can include many algo-

rithmic modules such as the rate allocation algorithm (i.e., how a peer allocates its

70

bandwidth to neighbors), the piece selection algorithm (i.e., which piece to down-

load first), and the topology management algorithm (i.e., which peers connect to

which peers). It may also include other algorithmic modules to integrate with other

techniques such as network-friendliness improvements (e.g., [5, 99]), shared bottle-

neck usage (e.g., [54]), or flash-crowd admission control. PEAC enables one to test,

in real settings, the performance of different algorithms and new features across a

general population or in specific settings.

5.3 Overview

We now give an overview of PEAC. We start with the scope and basic workflow of

PEAC. Then, we introduce the key components of PEAC.

5.3.1 Setting and Scope

PEAC is a hybrid live streaming system using both P2P and CDN. In particular,

PEAC is a piece-based system, in which the source divides streaming contents into

pieces to distribute to clients. A client downloads pieces predominantly using the

peer-to-peer mode.

PEAC focuses on performance evaluations in real settings with real users and

complements existing testing methods. We assume that the experimental subsystem

is tested in lab settings such as unit tests to fix correctness errors and program

crashes, and provide repeatability.

5.3.2 Experiment Workflow

A single PEAC experiment consists of one or multiple scenarios, where each scenario

is defined by the peer behavior configuration and the code that will be executed by

71

the peer running the scenario. Multiple scenarios in a single experiment are executed

in parallel. This is typical when developers want to compare the relative performance

of different algorithms or user behaviors.

A PEAC experiment proceeds in three phases:

• Definition: In this phase, the developer defines the experiment scenarios to be

executed, and places the experiment in the experiment queue.

• Staging: The set of available peers in the target channel is monitored for the

feasibility of generating the pending experiment scenarios. During this period, the

code and peer behavior configurations supporting the experiment are distributed

to peers.

• Testing: The feasibility condition is triggered, and a set of peers (transparently)

transition to use the experimental algorithm(s) at times according to the peer

behavior configuration. Note that during testing, the experimental subsystem is

treated as a black box.

Figure 5.1: PEAC experiment scenario timeline.

Figure 5.1 shows an example timeline for a single experiment scenario with three

clients. Clients begin by using only the stable system (labeled by S), but transition

72

to using the rescue and experimental subsystems (labeled by R and E, respectively)

upon joining the experiment. If the stable system is used as the rescue, it simply

continues to run and assumes the role of the rescue subsystem.

5.3.3 Components

PEAC experiment workflow is implemented by components shown in Figure 5.2:

• Experiment Definition and Control: This component manages and monitors the

experiment lifecycle to initiate and gather results from experiments. Experiment

scenarios, including peer behavior configurations and any necessary code, are dis-

tributed to peers with the help of trackers, a CDN, or the P2P overlay itself.

• Compositional Runtime: The Compositional Runtime enables easy, on-the-fly de-

ployment and reconfiguration of the algorithmic components in each client partic-

ipating in an experiment.

• Resource/Task Scheduler: As we discussed in Section 5.1, PEAC uses a dual system

to provide scalable protection and experimental accuracy at the same time. The

scheduler controls task and resource allocation among a rescue and experimental

subsystems when they execute concurrently.

• Media Player: The media player combines the video stream from multiple running

subsystems and displays it to the user.

5.3.4 Experiment Definition and Control

A key component of PEAC is its Experiment Definition and Control (EDC) com-

ponent. Although real user clients located at real networks provide a high degree

of realism, passively using real users may not provide key desired performance eval-

73

Figure 5.2: PEAC system architecture.

uation settings such as a flash crowd. Thus, EDC allows a developer to specify a

peer behavior configuration defining the desired user behaviors: the peers selected to

be included in the scenario; the selected peers’ arrival behavior; the selected peers’

lifetimes, and user behavior in response to video quality.

A key challenge of implementing EDC is scalability; we would like to support

channels and experiments with a large number of users. One way to implement

EDC is direct tracker control. This is the approach taken by some experimental

platforms (e.g., [62, 87, 97]), in which one or more controllers issue commands at

appropriate times to each peer to let it join or leave the test. While this approach

may work in certain settings, operating with real P2P peers is more challenging due

to increased controller load and complexity. For example, since between 60-80% [47]

of users are behind gateways using NAT, the controller must implement frequent

keep-alive messages between the controller and peers to keep the connection open

only in preparation for commands issued in the future.

74

In addition to supporting the direct server control mode, PEAC also introduces a

second mode called Distributed Scenario Control. This mode decouples the scenario

parameters from their execution, and thus relaxes the requirement that control mes-

sages are delivered to each peer within a small delay, in contrast with direct control

approaches. In particular, the scenario parameters can simply be broadcast to each

peer via existing mechanisms (e.g., piggybacked on existing messages, redistributed

using the P2P overlay or a CDN). Then, each peer locally decides and controls its own

arrival and departure times within a scenario. More details on Distributed Scenario

Control will be given in Section 5.4.

5.3.5 Resource/Task Scheduler

A key novelty of PEAC is that it uses a dual system in which both experimental

and rescue subsystem run parallel during an experimental trial. The clear seman-

tics of Internet live streaming makes it possible to merge the outputs of these two

subsystems before presenting to the users.

A key challenge in supporting large-scale live streaming evaluation with dual

systems, as we discussed in Section 5.1, is the resource and task assignment problem.

The solution to this problem can have a major impact on (1) the robustness to

protect user’s experiences; and (2) experimental accuracy.

Problem Formulation: To precisely state the requirements of the design of the

resource and task scheduler, we introduce some notations. Let S denote the existing

stable system, E an experimental system being evaluated, and C the algorithms for

fetching from a CDN or supernode.

The resource/task scheduler controls the allocation A of tasks and resources to

the subsystems. In particular, the behavior of an experimentation subsystem over

time T = [t1, t2] is dependent on both the allocated download tasks and resources.

75

Let D=[DS(t), DE(t), DC(t)] denote the download tasks (pieces) assigned at time t to

the stable, experimental, and CDN algorithms, respectively. Likewise, let R=[RS(t),

RE(t), RC(t)] denote the resources (e.g., bandwidth, connections, CPU, and memory)

allocated to each at time t. Then A = [D,R] denotes the combined experimentation

control behavior.

The performance of resource/task allocation A is compared with two benchmarks.

Let AS denote the allocation that all tasks and resources are allocated to the stable

system; AE the allocation that all tasks and resources are allocated to the experi-

mental subsystem.

Requirements: Then the objective of PEAC is to design an allocation A satisfy-

ing two requirements. The first requirement (R1) is to maintain user experience.

Given a performance metric Perf() defined such that higher values indicate better

performance, PEAC requires:

Perf(A) ≥ Perf(AS), (R1)

for performance metrics affecting the streaming quality visible to users. In particular,

the overall system should perform at least as well as (or possibly better than) the

stable system alone.

The second requirement (R2) is to obtain accurate performance measurements

from the experimental subsystem. In particular, this requirement can be stated as:

obtain Perf(AE) from Perf(A). (R2)

It is important to note that real live streaming systems are not deterministic

systems in that the performance metrics are random variables. Thus, the objective of

76

PEAC is to collect samples of performance metrics and evaluate on the distributions.

A major challenge in satisfying (R2) is that the rescue subsystem, in particular

the stable system as a rescue subsystem, may cause interference to the experimental

subsystem. Consider a simple example that when the experimental subsystem has all

of the clients’ uploading capacities, it can perform well. However, the resource/task

scheduler may trigger the rescue subsystem as rescue too early and allocate resources

to it. Then the accuracy of the experimental trial is lost.

Issues with Fixed Allocation: One might think that a simple, intuitive task

and resource allocation scheme is fixed, proportional allocation to provide isolation.

Specifically, in a simple, homogeneous proportional allocation scheme, the experi-

mental subsystem is allocated α fraction (say, 20%) of the resources and α fraction

of the tasks. A major advantage of this scheme is simplicity. Given this scheme, it

may be cleaner to design and conduct capacity planning for the rescue subsystem.

A major issue of the proportional allocation scheme, however, is to achieve (R2).

Let Perf(AαE) denote the performance of the experimental subsystem allocated with

α fraction of the tasks as well as α fraction of the resources. A streaming system is

said to be a scale-invariant streaming system for metric Perf at α if:

Perf(AαE) = Perf(AE), (Scale-Invariant)

for the given α.

Although one can derive sufficient conditions for a system to be scale-invariant,

not all systems are scale-invariant. One example setting that is not scale-invariant is

that there are bottlenecks in the internal networks. In addition, algorithms such as

slow-start may need modifications to support fixed allocations. To allow PEAC to

support more general experimental algorithms, we propose a more adaptive allocation

77

scheme named Adaptive Task Reassignment to satisfy both (R1) and (R2). Adaptive

Task Reassignment is presented in detail in Section 5.5.

Rescue Source Considerations: There are systems that use CDN as a rescue

source in a test channel (e.g., [42]). However, CDN may not be scalable or be

more costly. Also, without considering constraints such as the data flow constraints

(Section 5.5.3), such systems provide only protection, not experimental accuracy.

5.4 Distributed Scenario Control

We now give more details on Distributed Scenario Control. Recall from Section 5.3.4

that the objective of Distributed Scenario Control is to create an experiment where

peers decide and control their arrival and departure locally. It may first appear that

achieving the defined behavior requires global coordination. However, Distributed

Scenario Control’s design allows each peer to independently decide if it should par-

ticipate in the experiment scenario, and if so, at which time it should become active

(begin running). This improves scalability of experiment control with a large number

of peers.

Below we present the distributed algorithms. We focus on the peer behavior

configuration for a single scenario in an experiment; the algorithms are easily ex-

tended to support multiple scenarios in executing in parallel. We first focus on peer

arrivals and departures. We then present the triggering condition to start the arrival

process. We present the algorithm assuming that users do not leave while the exper-

iment scenario is in progress. Extensions to handle early, user-initiated departures

are in Section 5.4.3.

78

5.4.1 Controlled Arrivals and Departures

Distributed Scenario Control implements a flexible peer arrival and departure scheme.

Peer starts to arrive (i.e., transition) into the experimental systems after triggering

conditions are met. We first discuss the arrival/departure generation algorithm, and

in the next subsection discuss the triggering conditions.

Controlling Arrivals: Since real-world peer arrivals may be time varying due to

time of day or event schedule effects, the peer arrival rate (peers/second) will be a

function of time.

Problem definition: Given a global arrival rate function λ(t) on the interval [0, texp]

(the duration of the scenario), we devise an algorithm such that each peer i indepen-

dently computes its own arrival time ae,i, given the scenario start time tstart, λ(t),

and [0, texp]. Note that the arrival time here is the time that the peer switches to the

experiment system. Also note that the total number of peers to participate in the

scenario is implicitly included in this definition of the arrival behavior.

To generate non-homogeneous arrivals specified by rate function λ(t), we apply

the following theorem [21,75]:

Theorem 1. Let T1, T2, . . . be random variables representing the event times of

a non-homogeneous Poisson process with continuous expectation function Λ(t) =
∫ t

0
λ(x) dx, and let Nt represent the total number of events occurring before time t

in the process. Then, conditional on the number of events Ntexp = n, the event

times T1, T2, . . . , Tn are distributed as order statistics from a sample with distribution

function F (t) = Λ(t)
Λ(texp)

for t ∈ [0, texp].

An implication of Theorem 1 is that we can generate arrival times by drawing

random numbers, independently, according to the same distribution function F (t).

Sorting these independent arrival times, we obtain the arrival times of peers following

79

Tracker:
01. Generate n from Ntexp ∼ Poisson(Λ(texp))
02. Send tstart, texp, and λ(t) to n chosen peers

Peer i, upon receiving tstart, texp, and λ(t):

03. Draw waiting time wi according to F (t) = Λ(t)
Λ(texp)

04. Compute arrival time: ae,i = tstart + wi

Figure 5.3: Algorithm incorporating centralized control for each peer i to choose
arrival time ae,i.

the desired arrival rate function λ(t).

Specifically, Figure 5.3 gives one algorithm derived from the Theorem. In this

algorithm, the tracker picks n, chooses n specific peers, and then distributes the

rate function to these n peers so that each of them can independently generate its

arrival time. One requirement of this algorithm is synchronized clocks across peers

for accuracy. We assume that peers either use NTP or a central server (e.g., tracker)

as a reference point, and that small inaccuracies on the order a couple seconds are

acceptable. The effects of desynchronization are studied in our evaluations.

A problem of selecting specific n peers is that it may induce large overhead on

the experiment control system: the tracker becomes hard state and needs to keep

track of the specific n peers.

To reduce tracker overhead, Distributed Scenario Control approximates the to-

tal number of peers to join the experimental subsystem. This mode trades slight

variation in arrival rate for higher scalability.

Specifically, in this mode, Distributed Scenario Control draw the total number of

peers from a distribution N̂texp with the same mean (E[N̂texp] = E[Ntexp]) but with-

out increasing the variance (Var[N̂texp] ≤ Var[Ntexp]). Distributed Scenario Control

permits the variance on number of total peers to be reduced in the interest of tighter

80

Tracker:
01. Let M be the total number of available peers

02. Let p =
Λ(texp)

M

03. Send tstart, texp, λ(t), and p to each peer

Peer i, upon receiving tstart, texp, λ(t), and p:
04. if random() > p then return

05. Draw waiting time wi according to F (t) = Λ(t)
Λ(texp)

06. Compute arrival time: ae,i = tstart + wi

Figure 5.4: Algorithm with decentralized control for each peer i to choose arrival
time ae,i.

control over the number of peers.

Observe that using N̂texp ∼ Binomial(M,
Λ(texp)

M
) (where M is the total number

of available peers) not only fits the requirements, but enables a simple distributed

solution. The modified algorithm is shown in Figure 5.4. In this approximate

algorithm, the tracker computes p as a ratio of the expected value of peers in the

scenario (Λ(texp) = E[Ntexp]) to the total number of available peers M . Each peer

i independently, with probability p, participates in the scenario and computes an

arrival time at which it will become active. The number of peers to participate in

the scenario is distributed according to a Binomial distribution with mean Λ(texp).

Note that the accuracy of the distributed solution is also dependent on peer

dynamics. If a significant number of peers join or leave after M is computed (Line

1) but before each peer decides whether to enter the scenario (Line 4), the actual

number of peers in the scenario may be significantly different than defined by the peer

behavior configuration. If such a change is detected and is undesirable, Distributed

Scenario Control aborts the process and retries when the number of available peers

stabilizes temporarily.

Controlling Departures: After a peer has determined its arrival time for the

81

scenario, it also needs to determine the time at which it should depart (from the

experiments but remain in the stable system). A basic technique is to specify a

single probability distribution on peer life time, from which peer departure times are

drawn. However, since a user’s viewing duration may be dependent on its arrival time

or time of day [88], PEAC allows the peer lifetime distribution to be dependent on the

arrival time. Specifically, for a peer arriving at time t, the peer’s lifetime is drawn

from distribution Lt. The set of distributions {Lt}t is a configuration parameter.

While this is formally defined as an infinite set, it is approximated as a finite set on

non-overlapping time intervals in implementation.

Another factor that contributes to user departure is user behaviors. Specifically,

a user may leave a channel sooner if the displayed video has poor quality [64,65,88].

PEAC allows the developer to define conditions (e.g., playback freezes 3 times) under

which the peer should depart before its lifetime expires.

Extensions with Peer Classes: The preceding controls on arrivals and departures

can be customized for each specific class of peers, in a setting with heterogeneous

peers. For example, the peer behavior configuration may indicate that supernodes

should become active earlier than normal peers. In particular, classes are non-

overlapping subsets of peers. A class is specified by a set of properties on peers.

To determine the class of a peer, our system gathers the properties of the peer when

it initially registers with the tracker (e.g., IP address or peer role), from external

systems (e.g., P4P [99] or ALTO [5]), or while the peer is running in the stable sub-

system (e.g., upload capacity estimate). Denote for peer class j the desired arrival

behavior as λj(t) and the peer lifetime distributions as {Lj,t}t.

82

5.4.2 Triggering Conditions

The preceding controlled arrivals and departures start when an experiment can be

triggered; that is, when the system transits from the staging phase to the testing

phase. A remaining question is at what time the transition can happen.

Distributed Scenario Control triggers an experiment when certain conditions are

met. Note that since actual user behavior is not known a priori, satisfying the trig-

gering conditions does not guarantee that a sufficient number of peers are available

for the duration. The conditions presented here are extended to include a safety

margin α > 1 to account for prediction variations.

Denote the number of available peers in class j at time t as availj(t). For times in

the future, this function may be a conservative estimate and/or based on historical

behavior.

Arrived Peers Condition: At time tstart, there must be a sufficient number of

candidate peers to participate in an experimental scenario. Thus, we have:

Λj(texp) ≤ availj(tstart). (5.1)

Peer Lifetime Condition: A sufficient number of peers only at the beginning is

not enough. We also need a sufficient number of peers at any moment during the

test.

The expected number of active peers in class j in the scenario at time t can be

written as:

activej(t) ≤ Λj(t)−

∫ t

0

λj(x)Pr{Lj,x < t} dx,

where the second term is the cumulative number of departures up until time t. Note

that peer departures due to insufficient playback quality are not explicitly included.

83

Such departures only decrease the number of active peers in the scenario, making

the right-hand expression an upper bound.

Thus, we must also have:

activej(t) ≤ availj(t) ∀ t ∈ [tstart, tstart + texp], (5.2)

to ensure that there are enough peers in class j throughout the duration of the

scenario.

It is important to note that condition (5.2) does not require that any particular

peer is active for its entire lifetime. Distributed Scenario Control implements peer

substitution to handle peers that leave before either the desired departure time is

reached or the departure conditions were met. Peer substitution is explained in the

next section.

5.4.3 Handling Uncontrolled Early Departures

The preceding algorithms assume that users do not leave while the experiment sce-

nario is in progress. We now handle user-initiated departures, which may occur when

users switch channels or terminate the client software while actively participating in

a scenario. End-user network and system failures are treated as user-initiated depar-

tures. We refer to such peers as early-departed peers.

Distributed Scenario Control uses a novel scheme to substitute early-departed

peers with an available replacement peer in the same channel. When the replacement

peer takes over, it “reconstructs” the state of the replaced peer.

Distributed Scenario Control relies on the tracker to choose the replacement peer;

the algorithm proceeds in three phases. First, the tracker keeps a summary of the

current state for each peer in the scenario. Second, the tracker detects early-departed

84

peers. Finally, the tracker chooses a replacement peer.

Observe that detecting early-departed peers cannot be done within the experi-

mental subsystem since the peer may depart before its scheduled arrival, meaning the

experimental subsystem has not yet communicated with the tracker or other peers.

Thus, Distributed Scenario Control monitors peer state and detects departed peers

within the rescue subsystem.

Capturing Peer State: Each time a peer executes a keep-alive to the tracker, it

piggybacks on the message a summary of its current state for the scenario including

its scheduled arrival and departure times. If the peer is currently active in the sce-

nario, it also sends its current list of peers and buffer map (list of downloaded pieces).

When the peer exits, it also piggybacks its state in the disconnection message to the

tracker. To reduce bandwidth, only differences are sent if the tracker acknowledged

the previous state.

Detection: Upon receiving a disconnection message from a peer which is active

in the scenario, the tracker immediately detects it as an early-departed peer. To

handle cases where a disconnection message is not received, Distributed Scenario

Control reuses the existing mechanism in the tracker to detect such cases, typically

by declaring a peer as departed after failing to receive keep-alive message for a certain

time.

The tracker maintains a FIFO queue Dj of last-known states for early-departed

peers in class j. Upon detecting an early-departed peer in class j, the tracker appends

the peer’s last-known state to Dj.

Substitution: Peers that are not participating (either inactive or active) in the

scenario are candidates to serve as replacement peers. Upon receiving a keep-alive

message from a candidate in class j, the tracker checks if Dj is non-empty. If so, it

dequeues the first peer state from the queue and includes it in the keep-alive reply.

85

If the received state indicates that the replaced peer was active in the scenario, the

replacement peer immediately becomes active as well, and downloads the required

pieces from a CDN or supernode (to avoid causing excess resource contention). It

also initiates connections to the indicated peers. If the received state indicates that

the replaced peer was not active in the scenario, then the replacement peer waits

until the scheduled arrival time to become active.

5.4.4 Extensions

Re-use Experiment Peers: By default, Distributed Scenario Control allows a

peer to choose a single arrival time in the scenario. This makes it easier to satisfy

Theorem 1, which requires that each arrival time be chosen independently, whereas

selecting a second arrival time for a peer depends on the first arrival and departure

times that were selected. To allow such flexibility, Distributed Scenario Control

can be extended by dividing the arrival and departure behaviors into independent

sub-intervals.

P2P-enabled Dead Peer Detection: Relying on the tracker to declare the peer as

departed may cause the delay for substituting the peer to be long if a disconnection

message is not received. If the rescue system uses P2P exchanges, it is possible to

detect such cases much faster since message exchanges between peers is much more

frequent.

5.5 Adaptive Task Reassignment

Now that we have an environment in which we can create experiment scenarios at

a large scale with real users, we present our resource/task scheduler. The scheduler

controls the resources and tasks allocated to the stable, rescue, and experimental

86

subsystems, and it is crucial towards satisfying requirements for both protection of

user experience and experimental accuracy (Section 5.3.5).

During the staging phase, the scheduler treats the stable system as if it were a

rescue subsystem running without any corresponding experimental subsystem. Thus,

in this section, we focus on the testing phase when there are both a rescue subsystem

and experimental subsystem running concurrently.

5.5.1 Overview of Adaptive Allocation

Adaptive Task Reassignment is based on simple insights: it introduces time shifting

and conducts adaptive task and resource allocation across time.

To present Adaptive Task Reassignment, first consider the case that the experi-

mental subsystem is running alone at its typical lag behind the source, with all of the

download tasks and resources. This is illustrated in Figure 5.5(a). In this figure, the

rightmost piece is the most recent piece produced by the source at time t, denoted by

psrc(t); eplay(t) is the next piece to be played. For simplicity, below we assume that

the playpoints of clients are synchronized; small synchronization errors may occur in

practice and are acceptable.

The basic idea of Adaptive Task Reassignment is to first run the experimental

subsystem as if it were running alone (i.e., with all of the resources and tasks) This

improves experimental accuracy. However, in case a piece is not received by its

playback deadline in the experimental subsystem, responsibility for downloading the

piece is shifted to the rescue subsystem. The rescue subsystem may either be the

existing stable system, or it may download from a CDN or supernode. To make

rescuing possible, Adaptive Task Reassignment allocates a recovery time Trecover

to the rescue subsystem to download the missed pieces before the true playpoint

rplay(t), which is the next piece to be displayed to the user. This mode is illustrated

87

in Figure 5.5(b).

The Adaptive Task Reassignment idea is motivated by existing hybrid CDN+P2P

systems (e.g., [42]). In a general sense, one may consider the CDN component in a

hybrid CDN+P2P system as the rescue to the P2P component. If a piece cannot be

fetched by the P2P component T seconds before its time to be displayed to users,

the piece will be assigned to the CDN component. In this sense, the existing hybrid

CDN+P2P systems already implement adaptive time shifting of the assignments of

tasks.

However, Adaptive Task Reassignment generalizes the hybrid CDN+P2P scheme

to the setting of performance experimentation to address key architectural and ac-

curacy issues. The first issue of the hybrid systems is that since they do not consider

experimental accuracy, they do not consider the data flow constraints (Section 5.5.3).

When the data fetched by CDN are injected to the P2P system and redistributed, we

can no longer observe the performance of the P2P system alone (i.e., not satisfying

the (R2) requirement). Second, in a general setting, it may be essential that a rescue

subsystem utilizes P2P. For example, when there is a shared network bottleneck, a

P2P based rescue subsystem may retrieve all missing pieces, while a rescue subsys-

tem using only a CDN may not. Thus, Adaptive Task Reassignment is designed for

general, modular rescue and experimental subsystems.

To design an extensible framework for the task/resource scheduler of a system

composed of a general, modular rescue subsystem and a general, modular experi-

mental system, Adaptive Task Reassignment introduces a novel scheme called Player

Buffer Window as a Control API.

Requirements: To illustrate the need for this API, we first present requirements

that must be satisfied by the tasks allocated to the rescue and experimental subsys-

tems when they are both playing.

88

Bound recovery time: There must be at least time Trecover between the playpoints

rplay(t) and eplay(t):

eplay(t) ≥ Trecoverµ+ rplay(t), (recovery)

where µ is a the number of pieces per second and is a configuration parameter defined

by the channel.

Bound experimental subsystem lag: The experimental subsystem’s lag from the

source, psrc(t)− eplay(t), can influence its performance (e.g., if too little time is given

to distribute pieces amongst clients). Thus, the experimental subsystem is asked to

provide a lower bound emin
lag on its lag from the source:

psrc(t)− emin
lag ≥ eplay(t). (exp-lag)

Fixed user-visible lag: The user-visible playpoint is used by both the stable system

(during the staging phase) and the rescue subsystem (during the testing phase). To

avoid a sudden jump to a different point in the video stream, the user-visible play-

point rplay(t) must have fixed lag from the source even as the experimental subsystem

is started or stopped. The lag should be sufficiently large to accommodate different

experimental subsystems. We assume that minimum user-visible lag rmin
lag is given as

a parameter of the channel:

psrc(t)− rmin
lag ≥ rplay(t). (rescue-lag)

Assigning Playpoints is Not Enough: One may suggest that a simple mechanism

through which the scheduler controls the subsystems is by assigning their playpoints.

However, this is not sufficient. First, the playpoint chosen by either the rescue or

89

experimental subsystems may be a result of their particular algorithms, download

rate received from its download source (e.g., peers or a CDN), and desired startup

delay. Second, after a particular subsystem begins to play, it may be necessary to

pause and rebuffer, possibly shifting the playpoint forward or backward in time. For

these reasons, the scheduler should neither assign a particular playpoint nor assume

that the playpoint advances at a constant rate.

5.5.2 Player Buffer Window as a Control API

To provide each subsystem flexibility in choosing playpoints, the scheduler instead

uses the buffer window as a control mechanism instead of the playpoint itself. In this

scheme, at any time t, each subsystem is assigned a sliding window indicating the

range of pieces that the subsystem can download. We call this window the player

buffer window of the subsystem. The scheduler controls a subsystem by providing it

an initial window and sliding it at rate µ as time progresses. The subsystem may set

then its own playpoint. Given this general API, Adaptive Task Reassignment leaves

as much flexibility to individual subsystems as possible.

We denote the window position (the leftmost piece) for the rescue and experi-

mental subsystems at time t as rleft(t) and eleft(t), respectively.

Given this design, a remaining question is how the scheduler assigns the initial

windows for each subsystem. In particular, the scheduler provides to the rescue

subsystem the value rleft(ar,i) when the rescue subsystem starts at time ar,i. Likewise,

the scheduler provides the experimental subsystem the value eleft(ae,i) when it starts

at time ar,i.

API Definition: The Player Buffer Window API is implemented by two callbacks

provided by each subsystem.

setBufferWindowPosition(pos): The scheduler provides as input to the subsystem

90

Figure 5.5: Overview of Adaptive Task Reassignment; (a) Experimental subsystem
running alone; (b) Adaptive Task Reassignment mode.

the leftmost piece in its buffer window. Specifically, the scheduler provides eleft(ae)

to the experimental subsystem and rleft(ar) to the rescue subsystem.

getPlaypointRange(): To provide flexibility in the actual playpoint position, the

scheduler asks a subsystem to provide lower and upper bounds on the offset of the

playpoint within the buffer window. Let emin
off , emax

off denote the bounds provided

by the experimental subsystem. Thus, eleft(t) + emax
off ≥ eplay(t) ≥ eleft(t) + emin

off .

Corresponding notations rmin
off and rmax

off are defined for the rescue subsystem.

API Usage: The API is used in the following way. First, the scheduler queries

a subsystem to determine its playpoint range. Next, the scheduler computes the

buffer window position and supplies it to the subsystem. Specifically, when the

rescue subsystem starts at time ar, the scheduler computes rleft(ar) to instantiate

the rescue subsystem. When the experimental subsystem starts at time ae, the

scheduler computes eleft(ae) to instantiate the experimental subsystem.

After instantiation, the player window of the rescue system is from [rleft(t), eleft(t)),

and the experimental subsystem is from [eleft(t), psrc(t)). We next detail the algo-

rithm for computing buffer window positions for both a rescue subsystem and ex-

perimental subsystem.

Rescue Player Buffer Window: The rescue player buffer window is computed

91

when the client first joins the channel at time ar.

The scheduler must only consider requirement (rescue-lag) to initialize the rescue

subsystem. Thus, it enforces: psrc(t) − rmin
lag ≥ rleft(t) + rmax

off . Since psrc and rleft

increase at constant rate µ, it suffices to enforce: psrc(ar)− rmin
lag ≥ rleft(ar) + rmax

off .

The scheduler then directly computes rleft(ar) as:

rleft(ar) = psrc(ar)− rmax
off − rmin

lag , (5.3)

to minimize the user-visible lag within the requirements.

Experimental Player Buffer Window: The scheduler computes eleft(ae) when

the experimental subsystem is started. This occurs at the time ae provided by

Distributed Scenario Control.

The scheduler must consider requirements (recovery) and (exp-lag) to initialize

the experimental subsystem. Combining these requirements, we have psrc(t)−e
min
lag ≥

eplay(t) ≥ Trecoverµ + rplay(t). To satisfy the combined requirement, the scheduler

enforces:

psrc(t)− emin
lag

≥ eleft(t) + emax
off ≥ eleft(t) + emin

off

≥ Trecoverµ+ rleft(t) + rmax
off .

Since psrc, eleft, and rleft all increase at constant rate µ, it suffices to enforce:

psrc(ae)− emin
lag (exp-max-pp)

≥ eleft(ae) + emax
off ≥ eleft(ae) + emin

off

≥ Trecoverµ+ rleft(ae) + rmax
off . (exp-min-pp)

92

From these, the scheduler must determine a value for eleft(ae).

However, it is not guaranteed that a feasible assignment exists (e.g., if the exper-

imental subsystem requires too large of a lag). Observe that the quantity (exp-max-

pp) is bounded away from (exp-min-pp) by emax
off − emin

off . Thus, a feasible assignment

exists iff the condition

psrc(ae)− emin
lag − Trecoverµ− rleft(ae)− rmax

off

≥ emax
off − emin

off , (5.4)

is satisfied. Note that (5.3) may be shifted to time ae since rleft and psrc increase at

constant rate µ. After translation and combining with (5.4), we have:

rmin
lag − emin

lag − Trecoverµ ≥ emax
off − emin

off . (5.5)

If no feasible assignment exists to (5.5), the scheduler returns an error indicating

that the experiment cannot be executed in the channel. It is important to observe

that this condition may be verified when an experiment scenario is defined instead

of waiting until subsystem instantiation at each peer.

If the assignment is feasible, the scheduler directly computes eleft(ae) as:

eleft(ae) = psrc(ae)− emax
off − emin

lag .

5.5.3 Data Flow Constraint

There are additional considerations to account for when implementing Adaptive Task

Reassignment, in particular on data flow. The rescue subsystem is restricted to

only download pieces in the range [rleft(t), eleft(t))] to prevent it from downloading

93

duplicate pieces.

It is important that pieces downloaded by the rescue subsystem are not made

available to the experimental subsystem. Injecting additional pieces into the ex-

perimental subsystem can affect experimental accuracy. However, note that it is

safe to share pieces received by the experimental subsystem with the rescue sub-

system. This local copy does not affect Perf(AE) and makes it easier to satisfy

Perf(A) ≥ Perf(AS).

5.5.4 Rescue Subsystem Window Adjustment

After the experimental subsystem assigns a playpoint, the rescue subsystem’s player

buffer window may be expanded to be [rleft(t), eplay(t))] at each time t if the ex-

perimental subsystem does not download pieces after the playpoint. This provides

additional time for the rescue subsystem to recover missed pieces.

5.5.5 Load on Rescue Subsystem

In order to achieve (R2), it is important to control load on the rescue subsystem

when peer resources are used. When a peer initially starts the experimental subsys-

tem under Distributed Scenario Control, there may be missing pieces in the rescue

subsystem’s window. We trigger CDN protection for these pieces.

In order to achieve (R1), when there is a persistent high load on the rescue

subsystem, clients depart the experimental subsystem and return to using the stable

system alone.

94

5.5.6 Accuracy

Adaptive Task Reassignment achieves (R2) or provides a lower bound. In particular,

consider the case when the rescue subsystem downloads missing pieces from other

peers also running the experimental subsystem. When the experimental subsystem

performs well enough that the triggered rescue does not cause substantial interfer-

ence, Adaptive Task Reassignment provides accurate experimental results. On the

other hand, when there are high demands on the rescue subsystem, there can be

contention with the experimental subsystem, causing the experimental subsystem to

under-perform.

5.6 Compositional Runtime

We implement PEAC using a new architecture called Compositional Runtime. This

block-based architecture not only supports experimentation with dual systems and

easier distribution of code for an experiment scenario, but also matches well with

the setting that large, distributed live streaming systems supporting peer-to-peer

mode typically consist of a set of key algorithmic components such as connection

management, upload scheduling, admission control, and enterprise coordination.

5.6.1 Overview

The key objective of the Compositional Runtime is that the software structure should

allow modular design of algorithmic modules as well as easy composition of a system

consisting of both rescue and experimental algorithmic modules for an experimental

trial. On the other hand, if we run the multiple subsystems in separate programs,

experimentation control (e.g., data flow and buffer coordination in Adaptive Task

Reassignment) will be challenging to implement. Specifically, we identify the follow-

95

ing specific requirements for the framework:

• Modularity: Allow the developer to isolate algorithmic functions into self-contained

blocks; blocks in one subsystem should be oblivious to other subsystems.

• Composition: Allow blocks to be downloaded and composed at runtime. This

enables evaluations on-the-fly without waiting for (or forcing) users to stop and

re-start their clients.

• Isolation: Protect against poorly-behaving blocks and algorithms. Protection

should be provided against crash failures and scheduling should account for blocks

consuming too much CPU or memory.

• Data sharing: Allow blocks to access shared data structures (e.g., the list of con-

nected peers and the buffer maintaining downloaded pieces). This can provide a

more natural interface to developers than an alternative such as an event notifica-

tion system.

Our software architecture is inspired by prior architectures such as Click [55],

GNU Radio [38] and SEDA [95], but is tailored to meet the aforementioned require-

ments. Algorithmic components are implemented as independent blocks that define

a set of input ports and output ports over which messages (called packets in our

system) are received and emitted. A runtime scheduler is responsible for delivering

packets between blocks.

5.6.2 Modularity and Composibility

Block composition for live streaming: One key aspect of our framework is easy

composition of algorithmic functions. We use a simple example to illustrate it.

Figure 5.6 illustrates a portion of a live streaming client that is responsible for

managing peer connections. A block is responsible for demultiplexing received pack-

96

Figure 5.6: Adding an admission control component.

ets and emitting them to connected blocks responsible for handling each type of

message.

Now, assume the designer wishes to add an admission control algorithm to avoid

reduced performance for existing peers during flash crowds. Admission control may

be implemented as an independent block which reads handshake messages for newly-

connected peers. The block emits either the handshake message if the new connection

should be accepted or a disconnect message to the peer if the connection should be

rejected. The designer then composes the block as shown by the dotted line.

This example illustrates how the framework facilitates performing experiments

in a variety of scenarios by composing different combinations of algorithms without

developing multiple versions of the client software.

Framework Basics: Specifically, PEAC software architecture allows a software

designer to write a new block by extending a simple C++ interface. Copy-on-write

is used to avoid unnecessary memory copying when delivering packets. Compositions

of blocks are defined by a simple JSON configuration file.

To simplify development of new blocks, the runtime also allows blocks to sched-

ule timers for themselves. The designer may also instruct the runtime to execute

particular blocks in separate threads, thus enabling the use of blocking operations

such select.

97

Blocks are distributed as shared libraries and may be dynamically loaded and

composed at runtime. Similarly, blocks may be disconnected, removed, and unloaded

at runtime. This feature enables the client to be reconfigured at runtime to transition

between the staging and testing phases (e.g., to install the rescue and experimental

subsystems).

Callbacks at extension points: Some functionality may not be implementable

only by composing blocks. For example, a download scheduler algorithm has two

responsibilities: to decide which data to download and from which peer. Formulating

this as a matching problem, the result may be suboptimal if both peers and available

data from each peer are not considered jointly. To handle cases where algorithms

are difficult to decouple, our framework allows blocks to also define callbacks at

predefined extension points.

5.6.3 Coexistence of Dual Systems

Our software architecture facilitates designing and running both rescue and experi-

mental systems. In particular, since blocks are independent, the experimental system

can be composed from existing algorithms in the stable system by adding, removing,

or replacing functionality.

Scheduling: To achieve the requirement of Perf(A) ≥ Perf(AS), the software

framework monitors and controls resources used by the experimental system to

avoid reduced performance to the overall system. OS-level mechanisms (e.g., similar

to [50]) and a “split-process” model [39,94] can be used to control CPU and protect

against crashes.

Data flow and scope: Another aspect of our software system supporting dual

systems is to ensure that the rescue and experimental systems composed in the same

98

client share data only according to certain policies. Such policies are attached as a

data scope to each block.

Data scopes are hierarchical to allow both data sharing and isolation. In our

Adaptive Task Reassignment implementation, a root scope contains a block that

copies pieces from the experimental child scope to the rescue child scope (see Sec-

tion 5.5.3). The rescue and experimental systems run in different data scopes so that

data structures are isolated by default.

5.7 Evaluations

In this section, we evaluate multiple aspects of PEAC. First, we evaluate the software

architecture in terms of code size and implementation experience. Then, we evaluate

Distributed Scenario Control with focus on how its scalability and accuracy with a

large number of clients. Finally, we evaluate Adaptive Task Reassignment.

5.7.1 Methodology

We have implemented a complete live streaming system with clients, sources, track-

ers, and an experiment manager. Clients and sources are implemented using the

software framework presented in Section 5.6. Sources contain a custom block that

downloads pieces from a CDN.

To understand behavior for large-scale channels for Distributed Scenario Control,

we use emulated clients using the same client-side implementation of Distributed

Scenario Control used by our real clients. We use logs from PPLive channels and the

data presented in [2], a measurement of a live baseball game broadcast with nearly

60,000 concurrent users at its peak, to drive our emulations.

To evaluate Adaptive Task Reassignment, we deploy our tracker and clients on

99

Emulab [97] using Modelnet [90] to control delays and upload capacities. The RTT

between clients is 100 ms. A standard HTTP server serves as the CDN.

We focus on two metrics to quantify viewing quality for clients: (1) piece miss

rate, defined as fraction of pieces that are not downloaded before their playback

deadline, and (2) average buffer ratio, defined as the percentage of pieces in clients’

buffers, averaged across all clients. Note that buffer ratio is one of the primary

metrics that PPLive uses to determine whether the test of a new client in a testing

channel is successful or not.

5.7.2 Software Framework

We first evaluate the software framework. Since we have implemented the full system,

we present statistics on the size of the code to illustrate that the framework is simple

yet powerful.

The framework and live streaming client are implemented in C++. The full

system is divided into multiple components:

• Compositional Runtime (including scheduler, dynamic loading of blocks, etc): 3400

lines of code;

• Pre-packaged blocks (HTTP integration, UDP sockets and debugging): 500 lines

of code;

• Live streaming client: 4200 lines of code.

In our implementation experience, using this software architecture has enabled us

to incrementally develop and test individual components of the live streaming client.

With the Compositional Runtime, members of our research group have implemented

application-layer rate limiting, modified download schedulers, and even push-based

live streaming by simply writing new blocks and updating a configuration file.

100

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 0 5 10 15 20 25

N
um

be
r

of
 P

ee
rs

Time (Hours)

Figure 5.7: Opportunities to trigger 70,000-client 1-hour experiment in SH Sports
channel.

5.7.3 Distributed Scenario Control

We now evaluate Distributed Scenario Control by considering the full experiment

lifecycle.

Triggering Opportunities: First, we evaluate opportunities to trigger experiments

in real P2P live streaming channels. Using logs from popular PPLive channels, we

determine the size and duration of experiments that could be triggered by Distributed

Scenario Control.

Figure 5.7 shows the results for a 1-hour experiment with 70,000 peers within the

SH Sports channel on September 8, 2010. For simplicity, we assume that all peers

participate for the full duration of the experiment. The curve indicates the total

number of peers in the channel. The horizontal line indicates the times, a 30-minute

window in this case, at which the experiment could be triggered.

Figure 5.8 shows the results for a 4-hour experiment with 20,000 peers the HN

Satellite channel on September 10, 2010. There is a 45-minute window in which

the experiment could be triggered. We observe that this channel permits longer

experiments (still with a large number of peers), in contrast to the SH Sports channel

101

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 0 5 10 15 20 25

N
um

be
r

of
 P

ee
rs

Time (Hours)

Figure 5.8: Opportunities to trigger 20,000-client 4-hour experiment in HN Satellite
channel.

which supports even large experiments but for a shorter duration.

Scenario Parameter Distribution Overhead: Next, we show that Distributed

Scenario Control is scalable with respect to control overhead incurred by the tracker

to distribute the peer behavior configuration to each client. In our implementation,

the tracker includes these parameters in the keep-alive reply. To save bandwidth,

the tracker first determines the client’s class with a local lookup, then sends only the

peer behavior configuration for the client’s class. The size of the peer behavior con-

figuration depends on how the arrival rate parameter λ(t) is encoded. For flexibility,

we use a piecewise-linear definition, causing the overhead to scale with the number

of defined sections. Other families of functions could be encoded in a fixed number

of bytes.

We compute the control overhead as it scales with the number of peers in the

channel for a 1-hour experiment. Figure 5.9 shows the results. For comparison, we

also compute the total volume of traffic used by keep-alive messages sent by each peer

to the tracker every 30 seconds during the experiment. We observe that the overhead

is extremely small, less than 70MB, for a simple arrival behavior definition with 1

million peers. For more complicated arrival behavior definitions with 50 sections in

102

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000

 0 200 400 600 800 1000

C
on

tr
ol

 T
ra

ff
ic

 V
ol

um
e

(M
B

)

Number of Peers (Thousands)

Control Overhead for One Hour experiment

Tracker KeepAlive
Overhead (Sect=5)
Overhead (Sect=25)
Overhead (Sect=50)

Figure 5.9: Distributed Scenario Control requires little additional traffic.

the piecewise linear function, the overhead remains under 400MB.

Clients must also download the code for an experiment scenario, which includes

the algorithmic blocks used. We do not include these overheads in the preceding

overhead evaluation since they are inherent to software distribution and existing

upgrade mechanisms as well.

Achieved Arrival Behavior: Next, we evaluate the achieved arrival behavior.

Though Theorem 1 shows that the resulting arrival behavior should be a Poisson

process, it is possible for the achieved behavior to be impacted by (1) the use of

a Binomial for distributed control of number of clients, and (2) inaccurate time

synchronization between clients.

We evaluate the arrival behavior drawing from real arrival behaviors. In par-

ticular, we use the join rate captured from Figure 1 of [2] to instantiate the rate

parameter λ(t).

To test the achieved arrival behavior with a large number of peers, we emu-

late Distributed Scenario Control with 100,000 peers. Each client’s arrival time is

perturbed by a uniform random value selected from the interval [− s
2
, s
2
] to test the

impact of time desynchronization.

103

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600 700 800 900 1000

P-
V

al
ue

Clock Skew (seconds)

Figure 5.10: Distributed Scenario Control generates accurate arrival behaviors.

We test the hypothesis that the achieved arrival behavior could have been gen-

erated by rate parameter λ(t) using a Chi-Square test with the null hypothesis that

the arrivals in interval [t1, t2) are distributed according to Λ(t2) − Λ(t1). We place

arrival times in intervals of width 3 seconds, and then merge adjacent intervals until

both the expected number of arrivals and the actual number of arrivals in each is

at least 5. We execute the Distributed Scenario Control algorithm 30 times for each

value of s, compute the p-value for each, then combine the p-values using Fisher’s

Method and report an overall p-value.

Figure 5.10 shows the results. We observe that there is insufficient evidence to

reject the null hypothesis until after s > 600 seconds, where the p-value falls below

0.1. This appears to be a surprisingly-high tolerance, but closer inspection of the

join rate reveals that the rate changes only gradually. In particular, the slope of the

join rate curve at the start of the event (t = 4 hours) is 0.93 peers/minute. Next, we

consider Distributed Scenario Control with join rates that change more sharply.

To evaluate the arrival behavior in a more severe flash crowd, we perform the

same experiment with arrival rate function λ(t) = 2t for t ∈ [0, 160] seconds and a

channel size of 3000 peers. The p-value was greater than 0.9 for clock skew s ≤ 3

104

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 2000 4000 6000 8000 10000 12000 14000 16000

N
um

be
r

of
 P

ee
rs

Time (Seconds)

Total Peers
Exp Peers

Figure 5.11: Total peers and experimental peers in channel used to evaluate peer
dynamics.

seconds and dropped below 0.1 for s ≥ 5 seconds. Thus, after s = 5, we can reject

the null hypothesis.

Peer Dynamics: Finally, we evaluate the peer substitution. In particular, we

evaluate the delay required to substitute peers, with the intuition that departed

peers should be substituted within a short amount of time in order to avoid disrupting

experimental accuracy.

To evaluate the peer substitution delay with a substantial channel size, we emu-

late for the peer substitution algorithm in Section 5.4.3. The emulator captures peer

arrival and departure behaviors, keep-alive messages, and re-uses the same experi-

mental control implementation in our real clients.

Figure 5.11 shows the total number of peers in the channel and the number of

peers included in the configured scenario. The sharp increase at t = 4000 seconds

is the time the experiment is triggered, when 5187 peers begin to participate in the

scenario. Note that these peers do not become active in the scenario until their

chosen arrival time, but are substituted even if they depart before becoming active.

The peer substitution algorithm is utilized as the total number of peers declines while

there are still peers in the scenario.

105

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

 0 2000 4000 6000 8000 10000 12000 14000 16000

Su
bs

tit
ut

io
n

D
el

ay
 (

M
ill

is
ec

on
ds

)

Time (Seconds)

Figure 5.12: Peer substitution delay with peer dynamics.

Figure 5.12 shows the peer substitution delay averaged over 5-second windows.

We observe that the substitution delay is larger (nearly 1 second on average) at the

start of the experiment. This is because most peers in the channel are selected to join

the experiment, leaving only 276 replacement peers. As more replacement peers be-

come available, the substitution delay decreases. For this setting, the maximum peer

substitution delay is 2.8 seconds while the average is much lower at 0.168 seconds.

5.7.4 Adaptive Task Reassignment

We now evaluate Adaptive Task Reassignment. We use an experimental algorithm

in which a bug is introduced into the peer management component; the timeout for

disconnecting unresponsive peers is set to 1 second (the default value is 5 seconds).

We also consider multiple rescue subsystems:

• P2P Rescue: The rescue subsystem is our stable system, and

• CDN Rescue: The rescue subsystem downloads missing pieces from a CDN.

The following settings are used for our experiments. 120 clients join the channel

with an inter-arrival time of 15 seconds. After all clients have joined, they play for

5 minutes. The channel rate is 40 KBps. Trecover is 120 seconds.

106

Experiment accuracy: We first consider experimental accuracy. Table 5.1 shows

the results. The buggy algorithm has introduced poor performance, confirmed by

the increased piece miss rate of 4.37% (our default P2P algorithms have a 0.46%

piece miss rate in this setting). When either the CDN or P2P rescue subsystems

are enabled, the measured piece miss rate and buffer ratio is accurate, with a 2.7%

error at most. The piece miss ratio when using P2P Rescue is slightly higher since

it shares bandwidth resources with the experimental subsystem.

Buggy CDN Rescue (Err) P2P Rescue (Err)

Pieces Missed 4.37% 4.37% (0%) 4.48% (2.5%)

Buffer Ratio 72.71% 70.72% (2.7%) 72.98% (0.4%)

Table 5.1: Adaptive Task Reassignment can achieve experiment accuracy.

User-observable performance: We next investigate user-observable performance.

The results are shown in Table 5.2. As expected, the user observes no missed pieces

when using CDN Rescue. Using P2P Rescue also shows very good performance, with

only 0.04% of pieces missed. This is fewer than the 0.46% missed pieces when the

P2P Rescue runs alone, because fewer pieces need to be downloaded by P2P Rescue

when the experimental subsystem has already downloaded most of them.

CDN Rescue P2P Rescue P2P Rescue Alone

Pieces Missed 0.0% 0.04% 0.46%

Buffer Ratio 96.66% 97.47% 84.78%

Table 5.2: Adaptive Task Reassignment can protect user experience.

5.8 Discussions and Future Directions

We have illustrated that how PEAC enables scalable evaluation with real user clients.

Distributed Scenario Control allows scalable creation of user behaviors; Adaptive

107

Task Reassignment achieves scalable protection of user experience and experimental

accuracy.

5.8.1 Discussion

Q: [Intended Scope]: Is PEAC intended to create a new testbed for live streaming?

A: PEAC is intended to be complementary to existing testbeds (e.g., Emulab and

PlanetLab). PEAC has the ability to create and execute large-scale experiments with

real end-users and network environments that would be encountered if deployed to

end-users. Testbeds can be useful if more controlled environments or conditions are

needed for certain tests or evaluations.

Q: [Human Behavior]: Can PEAC evaluate the effects of human behaviors on

performance?

A: Human behavior with respect to video quality is not well understood and may

even vary between users, making it difficult to model. Since human behaviors may

have effects on the performance (e.g., depart sooner if there is poor video quality),

it can be beneficial to evaluate such behaviors within PEAC.

PEAC could be extended to evaluate human behaviors by displaying the exper-

imental subsystem’s video stream instead of the rescue subsystem’s stream, either

by default or after a user “opts-in”. Instead of departing if poor video quality is

observed, users may have the option to view the rescued video stream.

5.8.2 Future Directions

There are also avenues for future work. In particular, given the capabilities of PEAC

to run multiple experiment scenarios, it would be useful to have an automated debug-

ging framework for live streaming to identify performance issues in an experimental

108

system. Another future direction is to extend PEAC to other streaming systems, in

particular video-on-demand and CDN-based live streaming.

109

Chapter 6

Conclusions and Future Directions

In this dissertation, we present a novel Dual-System Architecture for supporting

large-scale, realistic evaluations for networked systems. Dual systems provide unique

benefits beyond existing techniques for testing and evaluating networked systems.

In particular, running the test system on the same infrastructure as the production

system, evaluations can be performed at the scale of the production infrastructure.

By exploiting application-specific semantics, we have shown that dual systems can

simultaneously provide accurate evaluations and avoid disruption to users. We have

illustrated how the Dual-System Architecture applies to real-world systems through

ShadowNet, a dual system for network configuration management, and PEAC, a

dual system for Internet-scale evaluation of a P2P streaming environment.

There are multiple avenues for future work. First, it can be possible to better

support incremental deployment. In particular, it may not be possible to simul-

taneously upgrade all components of a production infrastructure simultaneously to

support dual systems. In such a case, the components not supporting dual systems

are considered outside of the Dual-System Boundary. Though ShadowNet supports

certain cases (i.e., if the Dual-System Boundary is between BGP peers), a future

110

direction is to develop techniques to ease incremental deployment for other settings

as well.

Second, dual systems may integrate well with online debugging tools. For exam-

ple, [35] provides an debugging environment for networked applications. When both

the test and production system are running concurrently, it may be possible to insert

breakpoints at desired points in the execution to inspect the environment while the

other system is able to continue normal operation.

Finally, dual systems may be applicable to other usage scenarios as well. Though

network infrastructure and P2P live streaming are important applications, a future

direction is to apply dual systems to other types of content distribution such as CDNs

and video-on-demand. In particular, it may be possible to apply similar techniques

to resolve the conflict between accuracy and protection against disruption. One

can view the Packet Cancellation algorithm in ShadowNet as a lossy compression

that takes advantage of particular properties of traffic delivered by the test system.

Similar structure or properties may exist in other systems as well.

111

Bibliography

[1] Adobe. Adobe Flash Player 10.1. http://labs.adobe.com/technologies/flashplayer10/.

[2] S. Agarwal, J. P. Singh, A. Mavlankar, P. Baccichet, and B. Girod. Performance

and Quality-of-Service Analysis of a Live P2P Video Multicast Session on the

Internet. In 16th International Workshop on Quality of Service, IWQoS 2008.

Springer, June 2008.

[3] M. Agrawal, S. R. Bailey, A. Greenberg, J. Pastor, P. Sebos, S. Seshan,

K. van der Merwe, and J. Yates. RouterFarm: Towards a Dynamic, Man-

ageable Network Edge. In Proceedings of the 2006 SIGCOMM Workshop on

Internet Network Management. ACM, Sept. 2006.

[4] G. Altekar and I. Stoica. ODR: Output-Deterministic Replay for Multicore

Debugging. In Proceedings of the 22nd ACM Symposium on Operating Systems

Principles 2009. ACM, Oct. 2009.

[5] IETF ALTO Working Group. https://datatracker.ietf.org/wg/alto/

charter/.

[6] P. Anderson and A. Scobie. Large scale Linux configuration with LCFG. In

Proceedings of the Atlanta Linux Showcase, Berkeley, CA, USA, 2000.

112

[7] D. F. Bacon and S. C. Goldstein. Hardware-assisted Replay of Multiprocessor

Programs. In Proceedings of the 1991 ACM/ONR Workshop on Parallel and

Distributed Debugging. ACM, May 1991.

[8] P. Bahl, R. Chandra, A. Greenberg, S. Kandula, D. Maltz, and M. Zhang. To-

wards Highly Reliable Enterprise Network Services via Inference of Multi-level

Dependencies. In Proceedings of the ACM SIGCOMM 2006 Conference on

Applications, Technologies, Architectures, and Protocols for Computer Com-

munications, Kyoto, Japan, Aug. 2007. ACM.

[9] C. Bastian, T. Klieber, J. Livingood, J. Mills, and R. Woundy. Comcast’s

Protocol-Agnostic Congestion Management System. http://tools.ietf.

org/html/draft-livingood-woundy-congestion-mgmt-09, Sept. 2010.

[10] A. Bavier, N. Feamster, M. Huang, L. Peterson, and J. Rexford. In VINI

Veritas: Realistic and Controlled Network Experimentation. In Proceedings of

the ACM SIGCOMM 2006 Conference on Applications, Technologies, Archi-

tectures, and Protocols for Computer Communications, Pisa, Italy, Sept. 2006.

ACM.

[11] BitTorrent User Forums. http://forum.utorrent.com/viewtopic.php?id=

82450.

[12] T. Bonald, L. Massoulie, F. Mathieu, D. Perino, and A. Twigg. Epidemic

Live Streaming: Optimal Performance Trade-offs. In Proceedings of the 2008

ACM SIGMETRICS International Conference on Measurement and Modeling

of Computer Systems, Annapolis, MD, USA, June 2008. ACM.

[13] L. Bracciale, F. L. Piccolo, S. Salsano, and D. Luzzi. Simulation of Peer-to-

Peer Streaming Over Large-scale Networks using OPSS. In Proceedings of the

113

2nd International Conference on Performance Evaluation Methodologies and

Tools, VALUETOOLS 2007. ACM, Oct. 2007.

[14] M. Caesar, L. Subramanian, and R. Katz. A Case for an Internet Health

Monitoring System. In Proceedings of Hot Topics in System Dependability

(HotDep). USENIX, June 2005.

[15] CAIDA. CAIDA: Cooporative Association for Internet Data Analysis. http:

//www.caida.org/.

[16] B.-Y. Choi1, S. Moon, Z.-L. Zhang, K. Papagiannaki, and C. Diot. Analysis of

Point-To-Point Packet Delay In an Operational Network. In Proceedings IEEE

INFOCOM 2004, The 23rd Annual Joint Conference of the IEEE Computer

and Communications Societies. IEEE, Mar. 2004.

[17] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson, M. Wawrzoniak, and

M. Bowman. PlanetLab: an overlay testbed for broad-coverage services. ACM

SIGCOMM Computer Communication Review, 33(3):3–12, 2003.

[18] Cisco Systems. Common Routing Problem with OSPF Forwarding Address.

http://www.cisco.com/warp/public/104/10.pdf, Dec. 2005.

[19] Cisco Systems. Network Solutions Integrated Test Environment: De-

livering on the Promise of Innovation. http://www.cisco.com/

en/US/solutions/ns341/ns522/networking_solutions_products_

genericcontent0900aecd80458f98.pdf, 2006.

[20] Comcast. Comcast PowerBoost. http://customer.comcast.

com/Pages/FAQListViewer.aspx?topic=Internet&folder=

8b2fc392-4cde-4750-ba34-051cd5feacf0.

114

[21] D. R. Cox and P. A. W. Lewis. The Statistical Analysis of Series of Events.

Methuen, London, England, 1966.

[22] M. Crovella, C. Lindemann, and M. Reiser. Internet Performance Modeling:

The State of the Art at the Turn of the Century. Performance Evaluation,

42(2–3):91–108, 2000.

[23] A. Dhamdhere, R. Teixeira, C. Dovrolis, and C. Diot. NetDiagnoser: Trou-

bleshooting Network Unreachabilities using End-to-end Probes and Routing

Data. In Proceedings of the 2007 ACM Conference on Emerging Network Ex-

periment and Technology, CoNEXT 2007. ACM, Dec. 2007.

[24] M. Dischinger, A. Haeberlen, K. P. Gummadi, and S. Saroiu. Characterizing

Residential Broadband Networks. In Proceedings of the 7th ACM SIGCOMM

Conference on Internet Measurement 2007. ACM, Oct. 2007.

[25] G. W. Dunlap, D. G. Lucchetti, M. A. Fetterman, and P. M. Chen. Execution

Replay of Multiprocessor Virtual Machines. In Proceedings of the 4th Interna-

tional Conference on Virtual Execution Environments. ACM, Mar. 2008.

[26] N. Feamster and H. Balakrishnan. Detecting BGP Configuration Faults with

Static Analysis. In 2nd Symposium on Networked Systems Design and Imple-

mentation (NSDI 2005). USENIX Association, May 2005.

[27] N. Feamster, L. Gao, and J. Rexford. How to Lease the Internet in your Spare

Time. ACM SIGCOMM Computer Communication Review, 37(1):61–64, Jan.

2007.

[28] A. Feldmann. NetDB: IP Network Configuration Debugger/Database. Tech-

nical report, AT&T Research, July 1999.

115

[29] A. Feldmann and J. Rexford. IP Network Configuration for Intradomain Traffic

Engineering. IEEE Network Magazine, 15(5):46–57, September/October 2001.

[30] R. Fonseca, G. Porter, R. H. Katz, S. Shenker, and I. Stoica. X-Trace: A Per-

vasive Network Tracing Framework. In 4th Symposium on Networked Systems

Design and Implementation (NSDI 2007). USENIX Association, Apr. 2007.

[31] B. Fortz, J. Rexford, and M. Thorup. Traffic Engineering with Traditional IP

Routing Protocols. IEEE Communications Magazine, 40(10):118 – 124, Oct.

2002.

[32] P. Francois and O. Bonaventure. Avoiding Transient Loops During IGP Con-

vergence in IP Networks. In INFOCOM 2005. 24th Annual Joint Conference

of the IEEE Computer and Communications Societies. IEEE, Mar. 2005.

[33] P. Francois, M. Shand, and O. Bonaventure. Disruption Free Topology Recon-

figuration in OSPF Networks. In INFOCOM 2007. 26th IEEE International

Conference on Computer Communications. IEEE, May 2007.

[34] J. Fu and J. Rexford. Efficient IP-address Lookup with a Shared Forwarding

Table for Multiple Virtual Routers. In Proceedings of the 2008 ACM Conference

on Emerging Network Experiment and Technology, CoNEXT 2008. ACM, Dec.

2008.

[35] D. Geels, G. Altekar, P. Maniatis, T. Roscoe, and I. Stoica. Friday: Global

Comprehension for Distributed Replay. In 4th Symposium on Networked Sys-

tems Design and Implementation (NSDI 2007). USENIX Association, Apr.

2007.

116

[36] D. Geels, G. Altekar, S. Shenker, and I. Stoica. Replay Debugging for Dis-

tributed Applications. In Proceedings of the 2006 USENIX Annual Technical

Conference. USENIX, May 2006.

[37] GNS3. http://www.gns3.net/.

[38] GNU Radio: The GNU Software Radio. http://www.gnu.org/software/

gnuradio/.

[39] Google. Google Chrome. http://www.google.com/chrome.

[40] C. Griffiths, J. Livingood, L. Popkin, R. Woundy, and R. Yang. Comcast’s

ISP Experiences in a Proactive Network Provider Participation for P2P (P4P)

Technical Trial. RFC 5632 (Informational), Sept. 2009.

[41] D. Gupta, K. V. Vishwanath, and A. Vahdat. DieCast: Testing Distributed

Systems with an Accurate Scale Model. In 5th USENIX Symposium on Net-

worked Systems Design & Implementation. USENIX Association, Apr. 2008.

[42] D. H. HA, T. Silverton, and O. Fourmaux. A Novel Hybrid CDN-P2P Mech-

anism for Effective Real-time Media Streaming. Master’s thesis, Universite

Pierre et Marie Curie, Sept. 2008.

[43] H. Hamed, E. Al-Shaer, and W. Marrero. Modeling and Verification of IPSec

and VPN Security Policies. In 13th IEEE International Conference on Network

Protocols (ICNP 2005). IEEE Computer Society, Nov. 2005.

[44] M. Handley, E. Kohler, A. Ghosh, O. Hodson, and P. Radoslavov. Designing

Extensible IP Router Software. In 2nd Symposium on Networked Systems

Design and Implementation (NSDI 2005). USENIX Association, May 2005.

117

[45] U. Hengartner, S. Moon, R. Mortier, and C. Diot. Detection and Analysis of

Routing Loops in Packet Traces. In Proceedings of the 2nd ACM SIGCOMM

Workshop on Internet Measurement 2002. ACM, Nov. 2002.

[46] L. Huang, X. Nguyen, M. Garofalakis, J. Hellerstein, M. Jordan, A. D. Joseph,

and N. Taft. Communication-efficient online detection of network-wide anoma-

lies. In INFOCOM 2007. 26th IEEE International Conference on Computer

Communications. IEEE, May 2007.

[47] Y. Huang, T. Z. J. Fu, D.-M. Chiu, J. C. S. Lui, and C. Huang. Challenges,

Design and Analysis of a Large-scale P2P-VoD System. In Proceedings of the

ACM SIGCOMM 2008 Conference on Applications, Technologies, Architec-

tures, and Protocols for Computer Communications, Seattle, WA, USA, Aug.

2008. ACM.

[48] W. John and S. Tafvelin. Analysis of Internet Backbone Traffic and Header

Anomalies Observed. In Proceedings of the 7th ACM SIGCOMM Conference

on Internet Measurement 2007. ACM, Oct. 2007.

[49] S. Kandula, D. Katabi, and J.-P. Vasseur. Shrink: A Tool for Failure Diagnosis

in IP Networks. In Proceedings of the 1st Annual ACM Workshop on Mining

Network Data, MineNet 2005. ACM, Aug. 2005.

[50] E. Keller and E. Green. Virtualizing the Data Plane Through Source Code

Merging. In Proceedings of the ACM SIGCOMM 2008 Workshop on Pro-

grammable Routers for Extensible Services of Tomorrow. ACM, Aug. 2008.

[51] Z. Kerravala. Configuration Management Delivers Business Resiliency, Nov.

2002.

118

[52] Z. Kerravala. As the Value of Enterprise Networks Escalates, So Does the Need

for Configuration Management, Jan. 2004.

[53] E. Kiciman and L. Subramanian. A Root-cause Localization Model for Large-

scale Systems. In Proceedings of Hot Topics in System Dependability (HotDep).

USENIX, June 2005.

[54] M. S. Kim, T. Kim, Y.-J. Shin, S. S. Lam, and E. J. Powers. A Wavelet-Based

Approach to Detect Shared Congestion. In Proceedings of the ACM SIGCOMM

2004 Conference on Applications, Technologies, Architectures, and Protocols

for Computer Communication, Portland, Oregon, USA, Aug. 2004. ACM.

[55] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek. The Click

Modular Router. ACM Transactions on Computer Systems, 18(3):263–297,

Aug. 2000.

[56] R. R. Kompella, J. Yates, A. Greenberg, and A. C. Snoeren. IP Fault Local-

ization Via Risk Modeling. In 2nd Symposium on Networked Systems Design

and Implementation (NSDI 2005). USENIX Association, May 2005.

[57] R. R. Kompella, J. Yates, A. Greenberg, and A. C. Snoeren. Detection and

Localization of Network Black Holes. In INFOCOM 2007. 26th IEEE Interna-

tional Conference on Computer Communications. IEEE, May 2007.

[58] R. Krishnan, H. V. Madhyastha, S. Jain, S. Srinivasan, A. Krishnamurthy,

T. Anderson, and J. Gao. Moving Beyond End-to-End Path Information to

Optimize CDN Performance. In Proceedings of the 7th ACM SIGCOMM Con-

ference on Internet Measurement 2007. ACM, Nov. 2009.

[59] Kernel Samepage Merging. http://www.linux-kvm.org/page/KSM.

119

[60] R. LaFortune, C. D. Carothers, W. D. Smith, J. Czechowski, and X. Wang.

Simulating Large-Scale P2P Assisted Video Streaming. In 42nd Hawaii In-

ternational International Conference on Systems Science (HICSS-42 2009),

Proceedings. IEEE Computer Society, Jan. 2009.

[61] K. Lakshminarayanan, M. Caesar, M. Rangan, T. Anderson, S. Shenker, and

I. Stoica. Achieving Convergence-Free Routing using Failure-Carrying Packets.

In Proceedings of the ACM SIGCOMM 2006 Conference on Applications, Tech-

nologies, Architectures, and Protocols for Computer Communications, Kyoto,

Japan, Aug. 2007. ACM.

[62] L. Leonini, E. Riviere, and P. Felber. SPLAY: Distributed Systems Evaluation

Made Simple. In Proceedings of the 6th USENIX Symposium on Networked

Systems Design and Implementation. USENIX Association, Apr. 2009.

[63] S. Liu, R. Zhang-Shen, W. Jiang, J. Rexford, and M. Chiang. Performance

Bounds for Peer-assisted Live Streaming. In Proceedings of the 2008 ACM SIG-

METRICS International Conference on Measurement and Modeling of Com-

puter Systems, Annapolis, MD, USA, June 2008. ACM.

[64] Z. Liu, C. Wu, B. Li, and S. Zhao. Distilling Superior Peers in Large-Scale P2P

Streaming Systems. In INFOCOM 2009. 28th IEEE International Conference

on Computer Communications. IEEE, Apr. 2009.

[65] Z. Liu, C. Wu, B. Li, and S. Zhao. Why Are Peers Less Stable in Unpopular

P2P Streaming Channels? In Proceedings of the 8th International IFIP-TC 6

Networking Conference, volume 5550 of Lecture Notes In Computer Science,

Aachen, Germany, 2009. Springer.

120

[66] R. Mahajan, N. Spring, D. Wetherall, and T. Anderson. User-level Internet

Path Diagnosis. In Proceedings of the 19th ACM Symposium on Operating

Systems Principles 2003. ACM, Oct. 2003.

[67] D. A. Maltz, G. Xie, J. Zhan, H. Zhang, G. Hjalmtysson, and A. Greenberg.

Routing Design in Operational Networks: A Look from the Inside. In Proceed-

ings of the ACM SIGCOMM 2004 Conference on Applications, Technologies,

Architectures, and Protocols for Computer Communication, Portland, Oregon,

USA, Aug. 2004. ACM.

[68] J. Moy. OSPF Protocol Analysis. RFC 1245 (Informational), July 1991.

[69] S. Narain. Network configuration management via model finding. In Proceed-

ings of the 19th Conference on Systems Administration (LISA 2005). USENIX,

Dec. 2005.

[70] S. Narain. Overview of Configuration Validation. Presentation at LISA 2006

Configuration Workshop, Dec. 2006.

[71] ns-3. http://www.nsnam.org/.

[72] A. Nucci, S. Bhattacharyya, N. Taft, and C. Diot. IGP LinkWeight Assignment

for Operational Tier-1 Backbones. IEEE/ACM Transactions on Networking,

15(4), Aug. 2007.

[73] D. Oppenheimer, A. Ganapathi, and D. A. Patterson. Why Internet Services

Fail and What Can Be Done About These? In 4th USENIX Symposium on

Internet Technologies and Systems. USENIX, Mar. 2003.

[74] N. Parvez, C. Williamson, A. Mahanti, and N. Carlsson. Analysis of

BitTorrent-like Protocols for On-demand Stored Media Streaming. In Proceed-

121

ings of the 2008 ACM SIGMETRICS International Conference on Measure-

ment and Modeling of Computer Systems, Annapolis, MD, USA, June 2008.

ACM.

[75] R. Pasupathy. Generating Nonhomogeneous Poisson Processes. http://

filebox.vt.edu/users/pasupath/papers/nonhompoisson_streams.pdf.

[76] PPLive User Comments. http://tieba.baidu.com/f?kz=700224794.

[77] Quagga Software Routing Suite. http://www.quagga.net/.

[78] B. Quoitin, S. Uhlig, and O. Bonaventure. Using Redistribution Communities

for Interdomain Traffic Engineering. In From QoS Provisioning to QoS Charg-

ing, Third COST 263 International Workshop on Quality of Future Internet

Services, QofIS 2002. Springer, Oct. 2002.

[79] M. Roughan, T. Griffin, M. Mao, A. Greenberg, and B. Freeman. Combin-

ing Routing and Traffic Data for Detection of IP Forwarding Anomalies. In

Proceedings of the International Conference on Measurements and Modeling of

Computer Systems, Poster Session, New York, NY, USA, June 2004. ACM.

[80] Scalable Network Technologies. QualNet Developer. http://www.

scalable-networks.com/products/qualnet/.

[81] B. H. Sigelman, L. A. Barroso, M. Burrows, P. Stephenson, M. Plakal,

D. Beaver, S. Jaspan, and C. Shanbhag. Dapper, a Large-Scale Distributed

Systems Tracing Infrastructure. Technical Report dapper-2010-1, Google, Apr.

2010.

[82] Skype User Forums. http://forum.skype.com/index.php?showtopic=

95182.

122

[83] A. Soule, K. Salamatian, and N. Taft. Combining Filtering and Statistical

Methods for Anomaly Detection. In Proceedings of the 5th Conference on

Internet Measurement 2005. ACM, Oct. 2005.

[84] M. Steinder and A. S. Sethi. A Survey of Fault Localization Techniques in

Computer Networks. Science of Computer Programming, 53(2):165–194, Nov.

2004.

[85] D. Tang, A. Agarwal, D. O’Brien, and M. Meyer. Overlapping Experiment

Infrastructure: More, Better, Faster Experimentation. In Proceedings of the

16th ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining. ACM, July 2010.

[86] L. Tatman. Incorporating Routing Analysis into IP Network Management.

http://www.agilent.com/labs/features/2003_wp_roca.pdf, May 2003.

[87] C. Tuttle, A. C. Snoeren, and A. Vahdat. PlanetLab Application Management

Using Plush. Operating Systems Review, 40(1), Nov. 2006.

[88] I. Ullah, G. Bonnet, G. Doyen, and D. Gati. Modeling User Behavior in P2P

Live Video Streaming Systems through a Bayesian Network. InMechanisms for

Autonomous Management of Networks and Services, volume 6155 of Lecture

Notes In Computer Science. Springer, 2010.

[89] University of Oregon. University of Oregon Route Views Project. http://

www.routeviews.org/.

[90] A. Vahdat, K. Yocum, K. Walsh, P. Mahadevan, D. Kosti, J. Chase, and

D. Becker. Scalability and Accuracy in a Large-Scale Network Emulator. In

5th Symposium on Operating System Design and Implementation (OSDI 2002).

USENIX Association, Dec. 2002.

123

[91] VideoLAN - VLC media player. http://www.videolan.org/.

[92] K. V. Vishwanath and A. Vahdat. Evaluating Distributed Systems: Does Back-

ground Traffic Matter? In Proceedings of the 2008 USENIX Annual Technical

Conference. USENIX Association, June 2008.

[93] F. Wang, Z. M. Mao, J. Wang, L. Gao, and R. Bush. A Measurement Study

on the Impact of Routing Events on End-to-End Internet Path Performance.

ACM SIGCOMM Computer Communication Review, 36(4), Oct. 2006.

[94] WebKit2. http://trac.webkit.org/wiki/WebKit2.

[95] M. Welsh, D. Culler, and E. Brewer. SEDA: An Architecture for Well-

Conditioned, Scalable Internet Services. In Proceedings of the 18th ACM Sym-

posium on Operating System Principles. ACM, Oct. 2001.

[96] A. Whitaker and D. Wetherall. Forwarding Without Loops in Icarus. In Pro-

ceedings of Open Architectures and Network Programming. IEEE, June 2002.

[97] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M. Newbold, M. Hi-

bler, C. Barb, and A. Joglekar. An Integrated Experimental Environment for

Distributed Systems and Networks. In 5th Symposium on Operating System

Design and Implementation (OSDI 2002). USENIX Association, Dec. 2002.

[98] G. Xie, J. Zhan, D. A. Maltz, H. Zhang, A. Greenberg, G. Hjalmtysson, and

J. Rexford. On Static Reachability Analysis of IP Networks. In INFOCOM

2005. 24th Annual Joint Conference of the IEEE Computer and Communica-

tions Societies. IEEE, Mar. 2005.

[99] H. Xie, Y. R. Yang, A. Krishnamurthy, Y. Liu, and A. Silberschatz. P4P:

Provider Portal for Applications. In Proceedings of the ACM SIGCOMM

124

2008 Conference on Applications, Technologies, Architectures, and Protocols

for Computer Communications, Seattle, WA, USA, Aug. 2008. ACM.

[100] A. Zeller. Yesterday, My Program Worked. Today, It Does Not. Why? ACM

SIGSOFT Software Engineering Notes, 24(6):253–267, Nov. 1999.

[101] B. Zhang, T. S. E. Ng, A. Nandi, R. Riedi, P. Druschel, and G. Wang.

Measurement-Based Analysis, Modeling, and Synthesis of the Internet De-

lay Space. In Proceedings of the 6th ACM SIGCOMM Conference on Internet

Measurement 2006. ACM, Oct. 2006.

[102] B. Q. Zhao, J. C. Lui, and D.-M. Chiu. Exploring the Optimal Chunk Selection

Selection Policy for Data-Driven P2P Streaming Systems. In Proceedings P2P

2009, Ninth International Conference on Peer-to-Peer Computing. IEEE, Sept.

2009.

[103] Z. Zhong, R. Keralapura, S. Nelakuditi, Y. Yu, J. Wang, C. nee Chuah, and

S. Lee. Avoiding Transient Loops through Interface-Specific Forwarding. In

Quality of Service - IWQoS 2005: 13th International Workshop. Springer, June

2005.

[104] Y. Zhou, D.-M. Chiu, and J. C. Lui. A Simple Model for Analyzing P2P

Streaming Protocols. In Proceedings of the IEEE International Conference on

Network Protocols, ICNP 2007. IEEE, Oct. 2007.

125

