

Varied distance from access point
 Different building materials

Basic Idea: Exploit diverse channels to simultaneously transmit multiple packets to clients

## Superposition Coding Background

#### Encoding

- Weaker receiver's packet is allocated most power
- Stronger receiver's packet(s) is allocated remaining power
- Finally, modulated signals are summed



#### Decoding

- Weaker receiver decodes by treating additional packet as interference
- Stronger receiver decodes first layer, subtracts it out, then decodes remaining packet

# **Superposition Coding for Wireless Mesh Networks**

Li (Erran) Li, Richard Alimi, Ramachandran Ramjee, Jingpu Shi, Yanjun Sun, Harish Viswanathan, Yang Richard Yang

## MAC Scheduling with Superposition Coding

- Treat existing scheduler as black box
- Always transmit head-of-line packet
- Maximize throughput given current channel conditions

### **Algorithm Sketch**

Process $(pkt_{hol})$  – On receiving packet  $pkt_{hol}$  with next hop  $d_1$  from basic scheduler.

01. for each rate  $r_1$  and destination  $d \neq d_1$  do

02. if  $r_1$  not supported by d then

03. continue

04.  $r_2 \leftarrow$  max rate supported by d in second layer

05. if scheduling transmissions serially has better throughput then

06. continue

07. Select  $N_{d,r_1,r_2} = \lfloor \frac{r_2}{r_1} \rfloor$  packets to d from queue

08. Effective throughput is  $r_1 (1 + N_{d,r_1,r_2})$ 09. endfor

10. Select neighbor  $d^*$  and rate  $r_1^*$  combination with best effective throughput

11. Schedule  $pkt_{hol}$  in first layer at rate  $r_1^*$ , and  $N_{d^*,r_1^*,r_2^*}$  packets in second layer at rate  $r_2^*$ 

#### **Transmitted Packet**



#### ns-2 Evaluations

#### Single transmitter with multiple receivers

- Receivers placed at random around transmitter
- Average gains around 20% with 2 or 4 receivers



#### Mesh network with multiple gateways

- 25 flows from gateways to non-gateways via multi-hop path
- Average gains range from 26% to 46%



## **GNU Radio Prototype**

- Extend 802.11 standards for superposition coding
- First known implementation of superposition coding in GNU Radio
- Measurements show similar gains as displayed in evaluations

| Scheme        | Norm. exp. trans. time | Gain ratio |
|---------------|------------------------|------------|
| No Coding     | 3.92                   | 1          |
| Superposition | 2.88                   | 1.4        |

