### **Shadow Configurations**: A Network Management Primitive

Richard Alimi, Ye Wang, Y. Richard Yang

Laboratory of Networked Systems Yale University



## **Configuration is Complex**



Source: The Yankee Group, 2004

## **Configuration is Complex**

#### Planned Maintenance Hardware and software upgrades "80% of IT budgets is Unplanned used to maintain the status quo." Events Hardware and Unresolved Errors software events 3% **Power Errors** 9% Human Error Hardware Errors 62% 10% "... human error is **Human Factors** blamed for 50-80% Configuration changes **Telco Errors** causing outages of network outages." 16% Source: Juniper Networks, 2008

Source: The Yankee Group, 2004

Why is configuration hard today?

### Configuration Management Today

- Simulation & Analysis
- Depend on simplified models
  - Network structure
  - Hardware and software
- Limited scalability
- Hard to access real traffic



### Configuration Management Today

- Simulation & Analysis
- Depend on simplified models
  - Network structure
  - Hardware and software
- Limited scalability
- Hard to access real traffic



#### Test networks

Can be prohibitively expensive

### Configuration Management Today

- Simulation & Analysis
- Depend on simplified models
  - Network structure
  - Hardware and software
- Limited scalability
- Hard to access real traffic



#### Test networks

Can be prohibitively expensive

Why are these not enough?

## Analogy with Programming

Programming



# Analogy with Programming

Programming



### Analogy with Databases



### Analogy with Databases



#### **Network Management**



### Enter, Shadow Configurations

#### Key ideas

- Allow additional (shadow) config on each router
- In-network, interactive shadow environment
- "Shadow" term from computer graphics



### Enter, Shadow Configurations

#### Key ideas

- Allow additional (shadow) config on each router
- In-network, interactive shadow environment
- "Shadow" term from computer graphics



#### Key Benefits

- Realistic (no model)
- Scalable

- Access to real traffic
- Transactional

### Roadmap

Motivation and Overview

#### System Basics and Usage

#### System Components

- Design and Architecture
- Performance Testing
- Transaction Support

#### Implementation and Evaluation

### System Basics

#### What's in the shadow configuration?

- Routing parameters
- ACLs
- Interface parameters
- VPNs
- QoS parameters



### **System Basics**

#### What's in the shadow configuration?

- Routing parameters
- ACLs
- Interface parameters
- VPNs
- QoS parameters

















### Roadmap

Motivation and Overview

System Basics and Usage

#### System Components

- Design and Architecture
- Performance Testing
- Transaction Support

#### Implementation and Evaluation

| Management        |            |            |            |        |
|-------------------|------------|------------|------------|--------|
| Configuration UI  |            |            |            |        |
|                   |            |            |            | $\leq$ |
| Control Plane     |            |            |            |        |
| OSPF              |            |            |            |        |
| IS-IS             |            |            |            |        |
| Forwarding Engine |            |            |            |        |
|                   | F          | ΊB         |            |        |
|                   |            |            |            |        |
|                   | []         |            |            |        |
| Interface0        | Interface1 | Interface2 | Interface3 | /      |

| Management    |                                    |
|---------------|------------------------------------|
| Configuration | n UI                               |
| Control Plane |                                    |
| OS            | PF                                 |
|               | -IS                                |
| Forwarding En | igine                              |
|               | Shadow-enabled FIB                 |
|               | Shadow Bandwidth Control           |
| Interface     | 0 Interface1 Interface2 Interface3 |









### Shadow Bandwidth Control

#### Requirements

- Minimal impact on real traffic
- Accurate performance measurements of shadow configuration

### Shadow Bandwidth Control

#### Requirements

- Minimal impact on real traffic
- Accurate performance measurements of shadow configuration

#### **Supported Modes**

- Priority
- Bandwidth Partitioning
- Packet Cancellation

### **Packet Cancellation**

#### Observation

- Content of payload may not important in many network performance testing scenarios
- Only payload size may matter

### **Packet Cancellation**

#### Observation

- Content of payload may not important in many network performance testing scenarios
- Only payload size may matter

Idea: only need headers for shadow traffic

Piggyback shadow headers on real packets



### Packet Cancellation Details

Output interface maintains real and shadow queues

Packet cancellation scheduling

- If real queue non-empty
  - Grab real packet
  - Piggyback shadow header(s) if available
- Else if shadow queue non-empty
  - Send full shadow packet





### Commitment

#### Objectives

- Smoothly swap real and shadow across network
  - Eliminate effects of transient states due to config changes
- Easy to swap back

### Commitment

#### Objectives

- Smoothly swap real and shadow across network
  - Eliminate effects of transient states due to config changes
- Easy to swap back

#### Issue

- Packet marked with shadow bit
  - 0 = Real, 1 = Shadow
- Shadow bit determines which FIB to use
- Routers swap FIBs asynchronously
- Inconsistent FIBs applied on the path

Idea: Use tags to achieve consistency

Temporary identifiers

Idea: Use tags to achieve consistency

Temporary identifiers

- Distribute tags for each config
  - C-old for current real config
  - **C-new** for current shadow config



Idea: Use tags to achieve consistency

Temporary identifiers

- Distribute tags for each config
  - C-old for current real config
  - C-new for current shadow config
- Routers mark packets with tags



Idea: Use tags to achieve consistency

Temporary identifiers

- Distribute tags for each config
  - C-old for current real config
  - **C-new** for current shadow config
- Routers mark packets with tags
- Swap configs (tags still valid)



Idea: Use tags to achieve consistency

Temporary identifiers

- Distribute tags for each config
  - C-old for current real config
  - C-new for current shadow config
- Routers mark packets with tags
- Swap configs (tags still valid)
- Remove tags from packets
  - Resume use of shadow bit



Idea: Use tags to achieve consistency

Temporary identifiers

- Distribute tags for each config
  - C-old for current real config
  - C-new for current shadow config
- Routers mark packets with tags
- Swap configs (tags still valid)
- Remove tags from packets
  - Resume use of shadow bit
- For more details, see paper



### Roadmap

Motivation and Overview

System Basics and Usage

#### System Components

- Design and Architecture
- Performance Testing
- Transaction Support

#### Implementation and Evaluation

### Implementation

Kernel-level (based on Linux 2.6.22.9)

- TCP/IP stack support
- FIB management
- Commitment hooks
- Packet cancellation

#### Tools

- Transparent software router support (Quagga + XORP)
- Full commitment protocol
- Configuration UI (command-line based)

Evaluated on Emulab (3Ghz HT CPUs)

### Evaluation: CPU Overhead

- Static FIB
- 300B pkts
- No route caching



#### With FIB updates

- 300B pkts @ 100Mbps
- 1-100 updates/sec
- No route caching

### **Evaluation: Memory Overhead**

#### FIB storage overhead for US Tier-1 ISP



### **Evaluation: Packet Cancellation**



Accurate streaming throughput measurement

- Abilene topology
- Real transit traffic duplicated to shadow
- Video streaming traffic in shadow

### **Evaluation: Packet Cancellation**



#### Limited interaction of real and shadow

- Intersecting real and shadow flows
  - CAIDA traces
- Vary flow utilizations

### **Evaluation: Packet Cancellation**



Limited interaction of real and shadow

- Intersecting real and shadow flows
  - CAIDA traces
- Vary flow utilizations

### **Evaluation: Commitment**



#### Applying OSPF link-weight changes

- Abilene topology with 3 external peers
  - Configs translated to Quagga syntax
  - Abilene BGP dumps

### **Evaluation: Commitment**



#### Applying OSPF link-weight changes

- Abilene topology with 3 external peers
  - Configs translated to Quagga syntax
  - Abilene BGP dumps

### **Conclusion and Future Work**

Shadow configurations is new management primitive

- Realistic in-network evaluation
- Network-wide transactional support for configuration

#### Future work

- Evaluate on carrier-grade installations
- Automated proactive testing
- Automated reactive debugging

### Thank you!

### **Backup Slides**

### **Evaluation: Router Maintenance**



#### Setup

- Abilene topology with 3 external peers
  - Configs translated to Quagga syntax
  - Abilene BGP dumps