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\Configuration Leads to Errors

Planned Maintenance

Hardware and

“80% of IT budgets is software uperades
used to maintain the status quo.”

Unplanned
Events

Hardware and

Unresolved Errors software events

Human Error
62 %

Power Errors [ 3%
9%

Hardware Errors
10%

“ .. human error is
Configuration changes blamed for 50'80%
reusme outeess of network outages.”

Telco Errors
16%

Source: Juniper Networks, 2008

Source: The Yankee Group, 2004 Why is conﬁguration

hard today?
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Configuration Management
Today

Simulation & Analysis

2 Depend on
simplified models

Network structure
Hardware and software

0 Limited scalability
0 Hard to access

real traffic
Test networks Why are these
0 Can be prohibitively expensive not enough?
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\Analogy with Programming

Programming

@@5;53
e

| Configs Target
SN _—_ - - Network
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\Analogy with Databases

Databases

STATE A
INSERT ...

UPDATE ...
DELETE ...

STATE B

/11l

INSERT ...
UPDATE ... Network Management
DELETE ... STATE A

ip route ...
STATEB

=
ip addr .. aag ?
STATEC
router bgp ... \
STATED
-

router ospf ...

2
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Enter, Shadow Configurations

are

Hardw
Key ideas X ’
2 Allow additional (shadow)

config on each router .

0 In-network, interactive .l
shadow environment -

a0 “Shadow” term from
computer graphics

Key Benefits
2 Realistic (no model) 2 Access to real traffic
Q2 Scalable 2 Transactional
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Roadmap

Motivation and Overview

System Basics and Usage

System Components
2 Design and Architecture
2 Performance Testing

0 Transaction Support

Implementation and Evaluation
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\System Basics

What's in the shadow configuration?

2 Routing parameters
2 ACLs

0 Interface parameters
2 VPNs

0 QoS parameters

*
”””
llllllllllllllllllllllllllllllllllll

Real header
marked “0”

Shadow header
marked “1”
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\Example Usage Scenario:
Backup Path Verification

Backup 7/
/

4 \

AT
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\Example Usage Scenario:
Backup Path Verification

%ﬁ

packets in
shadow
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\Example Usage Scenario:
Backup Path Verification

d i\
AN

Disable \

/ shadow link
y; N\

%ﬁ i @ﬁ%
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\Example Usage Scenario:
Backup Path Verification

\

N
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\Example Usage Scenario:
Configuration Evaluation

ﬁfﬁ ﬁ/‘

Video Server

A

[
i
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I
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\Example Usage Scenario:

Configuration Evaluation
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\Example Usage Scenario:
Configuration Evaluation

Video Server

Duplicate
packets to
shadow
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Roadmap

Motivation and Overview

System Basics and Usage

System Components

2 Design and Architecture
2 Performance Testing

0 Transaction Support

Implementation and Evaluation
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\Design and Architecture

Management

Configuration Ul

/

Control Plane

OSPF

BGP

IS-1S

/

.
-~

-

Forwarding Engine

FIB

Interface0

Interface1

Interface2

Interface3

AN
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Design and Architecture

Management

Configuration Ul

/Control Plane A
OSPF
BGP
IS-IS
\ %
/Forwarding Engine \
Shadow-enabled FIB
Shadow Bandwidth Control
\ Interface0 Interface1 Interface2 Interface3 /
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Design and Architecture

Management

Configuration Ul

/Control Plane h
OSPF Shadow Management W
BGP .
SIS Commitment
o %
/Forwarding Engine \
Shadow-enabled FIB
Shadow Bandwidth Control
\ Interface0 Interface Interface2 Interface3 /
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Design and Architecture

Management

Configuration Ul

Debugging Tools

Shadow Traffic Control

FIB Analysis

/

Control Plane

OSPF

BGP

IS-1S

Shadow Management

Commitment

/

OSPF

-
/

-

Forwarding Engine

Shadow-enabled FIB

Shadow Bandwidth Control

Interface0

Interface1 Interface2

Interface3

AN
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Design and Architecture

Management

Configuration Ul

Debugging Tools

Shadow Traffic Control

FIB Analysis

/

Control Plane

OSPF

BGP

IS-1S

Shadow Management

CII,

/

OSPF

-
/

-

Forwarding Engine

Shadow-enabled FIB

Interface0

E Shadow Bandwidth Control S

Interface1

Interface2

Interface3

AN
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Shadow Bandwidth Control

Requirements
a2 Minimal impact on real traffic

0 Accurate performance measurements of shadow
configuration

Supported Modes

2 Priority

2 Bandwidth Partitioning
0 Packet Cancellation

February 16, 2009 Yale University
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Packet Cancellation

Observation: in many network performance
testing scenarios,

0 Content of payload is not important
2 Only payload size matters

|dea: only need headers for shadow traffic

Piggyback shadow @ O &y
headers on real L
paCketS @ Piggybacked %

shadow
header
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\Packet Cancellation Detalls

Output interface maintains real and shadow queues
a0 Qand Q

pktsched() — packet cancellation and scheduling.
01. if not empty (O, ) then

02. p+— degueue(O,) /l Select real packet I

03. /! Append shadow packet headers 1]

04. forl. MAY CANCELLABLE do LI

05. if not virtual clock expired(peek(O;))

06. break TI0 0 ]

07. p — append(p.ip hdr(dequeue(Q;)) e —» ]
08. endfor

09.  transmit(p)

10. elseif not em pty(O; ) then

11. /I Send shadow packet if available —» [
12.  ifvirtual clock expired(peek(O;)) e I I ]

13. transmit (dequeue(J;))

14. endif
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\Packet Cancellation Detalls

Output interface maintains real and shadow queues
a0 Qand Q

pktsched() — packet cancellation and scheduling.

01. if poat ety O ) then

02. | p +— degueue(O,) !/l Select real packet I

03. | // Append shadow packet headers

04. |forl. MAYX CANCELLAELE do LT

05. if not virtual clock expired(peek(Q;))|

06. break T J0 ]

07. p — append(p.ip hdr(dequeue(Q;)) e —» ]
08. endfor

09. transmit It:r]l

10. elseit not empiy((; ) then

11. /! Send shadow packet if available \

12.  ifvirtual clock expired(peek(O;)) e T 010 ] 1
13. transmit (dequeue(J;))

14. endif
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\Packet Cancellation Detalls

Output interface maintains real and shadow queues
a0 Qand Q

pktsched() — packet cancellation and scheduling.

01. if ’

02. | p +— degueue(O,) !/l Select real packet I
I:ﬂrm—, —1 N

03. ppend shadow pacKel headers T 0]

04. for 1. MAY CANCELLAELE do

05. if not virtual clock expired(peek(O;))
06. break TI0 0 ]
07. p — append(p.ip hdr(dequeue(Q;)) e —» ]
08. ;
09. | transmit (p) |
. el

10. elseit not empiy((; ) then

11. /I Send shadow packet if available —» [
12. if virtual clock expired(peek(Q;)) e I I

13. transmit (dequeue(J;))

14. endif
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\Packet Cancellation Detalls

Output interface maintains real and shadow queues

0 Qr and Qs

pktsched() — packet cancellation and scheduling.
01. if not empty (O, ) then

02. p+— degueue(O,) /l Select real packet
03. /! Append shadow packet headers

04. forl.. MAYX CANCELLAELE do

05. if not virtual clock expired(peek(O;))
06. break

07. p — append(p.ip hdr(dequeue(Q;))
08. endfor

09.  transmit(p)
10. elseif not em pty(O; ) then

11. 1lahle

12. | ifvirtual clock expired(peek(O;)) ‘
13. transmit (dequeue(J;))

14. en

]
I ]

ell LI |ﬂ[|:|

[
e I I
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\Forwarding Overhead

Without Packet Cancellation:

With Packet Cancellation:

RO RO R RJ e

Cancellation may require routers to process more packets.
Can routers support it?

February 16, 2009 Yale University
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Forwarding Overhead Analysis

Routers can be designed for worst-case
2 L : Link speed
o K :Minimum packet size
L
0 Router supports *z— packets per second

Load typically measured by link utilization
o a : Utilization due to real traffic (packet sizes k)

o a_: Utilization due to shadow traffic (packet sizes k)

We require:

oty L ot L L
E{m}+ﬂi‘{ }-Hﬂcﬁ:
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Forwarding Overhead Analysis

Routers can be designed for worst-case

2 L : Link speed

o K :Minimum packet size

0 Router supports ‘Ii packets per second
Load typically measured by link utilization
o a : Utilization due to real traffic (packet sizes k)

o a_: Utilization due to shadow traffic (packet sizes k)

We require: Example:
. {% L} . {ms L} I With a = 70%, and 80% real traffic utilization
< o

2 T Support up to 75% shadow traffic utilization
I 5

Min
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Commitment

Obijectives

2 Smoothly swap real and shadow across network
Eliminate effects of reconvergence due to config changes

2 Easy to swap back

February 16, 2009 Yale University
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Commitment

Obijectives

2 Smoothly swap real and shadow across network
Eliminate effects of reconvergence due to config changes

2 Easy to swap back

Issue

0 Packet marked with shadow bit
0 = Real, 1 = Shadow

0 Shadow bit determines which FIB to use
2 Routers swap FIBs asynchronously
2 Inconsistent FIBs applied on the path

February 16, 2009 Yale University
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Commitment Protocol

ldea: Use tags to achieve consistency
0 Temporary identifiers

Basic algorithm has 4 phases

February 16, 2009 Yale University
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Commitment Protocol

ldea: Use tags to achieve consistency
0 Temporary identifiers

Basic algorithm has 4 phases

2 Distribute tags for each config
C-old for current real config
C-new for current shadow config
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Commitment Protocol

ldea: Use tags to achieve consistency

0 Temporary identifiers

Basic algorithm has 4 phases

2 Distribute tags for each config
C-old for current real config
C-new for current shadow config

0 Routers mark packets with tags
Packets forwarded according to tags

February 16, 2009 Yale University
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Commitment Protocol

ldea: Use tags to achieve consistency
0 Temporary identifiers

Basic algorithm has 4 phases

2 Distribute tags for each config
C-old for current real config
C-new for current shadow config

0 Routers mark packets with tags
Packets forwarded according to tags

0 Swap configs (tags still valid)

February 16, 2009 Yale University
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Commitment Protocol

ldea: Use tags to achieve consistency
0 Temporary identifiers

Basic algorithm has 4 phases

2 Distribute tags for each config
C-old for current real config
C-new for current shadow config

0 Routers mark packets with tags
Packets forwarded according to tags

0 Swap configs (tags still valid)

0 Remove tags from packets
Resume use of shadow bit
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Commitment Protocol

ldea: Use tags to achieve consistency
0 Temporary identifiers

Basic algorithm has 4 phases

2 Distribute tags for each config
C-old for current real config
C-new for current shadow config

0 Routers mark packets with tags
Packets forwarded according to tags

<C_Swap configs (tags still valid) >

o Remove tags from packets
Resume use of shadow bit
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\Transient States

Definition: State in which some packets use C-old
and others use C-new.

C-old C-n

& =<
— Transient —
%/e e State C-new \e
& .
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\Transient States

Definition: State in which some packets use C-old
and others use C-new.

C-old

e/
C-old /e e C-new\e
& & .
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\Transient States

Definition: State in which some packets use C-old
and others use C-new.

C-old

\ C-new /

C-old /e e
Possible overutilization!
Should be short-lived, even with errors
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Error Recovery During Swap

If ACK missing from at least one router, two cases:
(a) Router completed SWAP but ACK not sent
(b) Router did not complete SWAP Transient State

C-new

@
>@ @

February 16, 2009 Yale University
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Error Recovery During Swap

If ACK missing from at least one router, two cases:

(a) Router completed SWAP but ACK not sent
(b) Router did not complete SWAP Transient State

Detect (b) and rollback quickly

Q Querying router directly may be impossible

C-new

@
>ﬁ @
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Error Recovery During Swap

If ACK missing from at least one router, two cases:
(a) Router completed SWAP but ACK not sent
(b) Router did not complete SWAP Transient State

Detect (b) and rollback quickly

Q Querying router directly may be impossible

Solution: Ask neighboring routers

° u If YES:
Case (b): rollback other routers

& Otherwisé,

YDO you see C-old Case (a): no transient state
data packets?

February 16, 2009 Yale University
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Roadmap

Motivation and Overview

System Basics and Usage

System Components
2 Design and Architecture
2 Performance Testing

0 Transaction Support

Implementation and Evaluation
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Implementation

Kernel-level (based on Linux 2.6.22.9)
0 TCP/IP stack support

2 FIB management

0 Commitment hooks

2 Packet cancellation

Tools

2 Transparent software router support (Quagga + XORP)
2 Full commitment protocol

0 Configuration Ul (command-line based)

Evaluated on Emulab (3Ghz HT CPUs)
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Evaluation: CPU Overhead

Static FIB
2 300B pkts
2 No route caching

With FIB updates
0 300B pkts @ 100Mbps
2 1-100 updates/sec

2 No route caching

February 16, 2009

Standard Kemel
Shadow Kemel ---------- |

1 1
S0 100 150 200 250
Throughput (Mbps)

100
80 |
®
LY 60
&
=
o 40t
=9
&
20 |
0
0
100
80 |
®
o
&
W
=
=
=
o
2
0
0

Standard Kemel

Shadow Kemel -----------
1 1

Yale University

1
5 10 15 20 25 30

Time (sec)

47



Evaluation: Memory Overhead

FIB storage overhead for US Tier-1 ISP

Single Router Removed Multiple Routers Removed
100
Q)
S 80t
2
S 60 |
o
=
7 40 -
S 3
E 20
=
0 20 40 60 80 100 0 20 40 60 80 100
Normalized Router ID (Sorted) % Routers Removed
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Evaluation: Packet Cancellation

25 . :
Shadow Only
f Cancellation Enabled P
) 20 . " Cancellation Disabled, 17
£ Ao
E’ 15 B :r ' :l Ii _.I";l I‘|| |"'-'q| I!.* 1: :. Ii 7]
= | L e | | i b
= | | 4 o o | ) | '
® 10 (1 Ll E Y M |
E il I it ! ! I: '! 4 i! | | .! i.
= 5 | ii II: i ' I i;
i) | i ' .
0 = o : g i " - | e :
0 10 20 30 4 S0 60
Time (s)

Accurate streaming throughput measurement
2 Abilene topology
0 Real transit traffic duplicated to shadow

2 Video streaming traffic in shadow
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Evaluation: Packet Cancellation

Real at 40 % Utilization

0.8 |
3:
= 06t
!
2
£ 04 /' No Shad.
/" 20% Shad.
0.2+ 7 40% Shad.
) 60 % Shad.

0.4-02 0 02 04

Delay Vanation (ms)

Limited interaction of real and shadow

0 |ntersecting real and shadow flows
CAIDA traces

2 Vary flow utilizations
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Evaluation: Packet Cancellation

Real at 40 % Utilization Shadow at 40 % Utilization
1 T T T —— T T T —
0.8 t
=
= 0.6 -
!
g 047 7 No Shad. ] /" No Real
7 ZU% Shad. = 20% Real
0.2 | 40% Shad. 7" 40% Real
0 { ﬁ[l% Shal:l. ﬁl}% Real
-[Id-i]'}! 0 0.2 04 -na-uz 0 0.2 04
Delay Vanation (ms) Delay Variation (ms)

Limited interaction of real and shadow

0 |ntersecting real and shadow flows
CAIDA traces

2 Vary flow utilizations
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Evaluation: Commitment

Manual Configuration

140

130 -
"

120 .
110 | -

100 | th

90 r

80 | e

RTT (ms)

T0

0 5 IID lIS EI[I ZIS 3"{' 3:5
Time (s)
Applying OSPF link-weight changes

2 Abilene topology with 3 external peers

Configs translated to Quagga syntax
Abilene BGP dumps
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Evaluation: Commitment

Manual Configuration Shadow Commitment
140 — T
130 | L-l .
120 . Reconvergence
é 110 L i in shadow
= 100 | - .
= 90 | | ] e
80 Fehrrers w—w—u—-
T0

0 5 101520253035 0O 5 10 15 20 25 30 35
Time (s) Time (s)
Applying OSPF link-weight changes

2 Abilene topology with 3 external peers

Configs translated to Quagga syntax
Abilene BGP dumps
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Evaluation: Router Maintenance

110 . . . .
l s
100 \
E 95 + Swap back _
= Commit | | after restart
B~ 90 r before
Rl shul:down\
85 ¢ i
g et PRI
15 1 L L L I
0 20 40 60 80 100

Time (s)

Temporarily shutdown router

2 Abilene topology with 3 external peers
Configs translated to Quagga syntax
Abilene BGP dumps
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Evaluation: Router Maintenance

110 . . . .
ol o
100 | \
) Swap back
E’ ol Commit | aﬁefmstmt 1
E 90 efore i
e g5 | ]sjhEtdown\ |
g et
75 ' | ' '
0 20 40 60 8 100
Time (s) \ 41 ms latency
Temporarily shutdown router vz /ﬁ\e#
0 Abilene topology with 3 external peers ~ \e/ Cew
Configs translated to Quagga syntax 51 ms latency

Abilene BGP dumps

February 16, 2009 Yale University 55



Conclusion and Future Work

Shadow configurations is new management primitive
0 Realistic in-network evaluation
2 Network-wide transactional support for configuration

Future work

0 Evaluate on carrier-grade installations
2 Automated proactive testing

0 Automated reactive debugging

February 16, 2009 Yale University 56



Thank you!
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